I'm trying to write a custom kernel using GpuMat
data to find the arc cosine of an image's pixels. I can upload, download, and change values when I upload data when the GPU has CV_8UC1
data but chars cannot be used to calculate arc cosines. However, when I try to convert my GPU to CV_32FC1
type (floats) I get an illegal memory access error during the download part. Here is my code:
//.cu code
#include <cuda_runtime.h>
#include <stdlib.h>
#include <iostream>
#include <stdio.h>
__global__ void funcKernel(const float* srcptr, float* dstptr, size_t srcstep, const size_t dststep, int cols, int rows){
int rowInd = blockIdx.y*blockDim.y+threadIdx.y;
int colInd = blockIdx.x*blockDim.x+threadIdx.x;
if(rowInd >= rows || colInd >= cols)
return;
const float* rowsrcptr=srcptr+rowInd*srcstep;
float* rowdstPtr= dstptr+rowInd*dststep;
float val = rowsrcptr[colInd];
if((int) val % 90 == 0)
rowdstPtr[colInd] = -1 ;
else{
float acos_val = acos(val);
rowdstPtr[colInd] = acos_val;
}
}
int divUp(int a, int b){
return (a+b-1)/b;
}
extern "C"
{
void func(const float* srcptr, float* dstptr, size_t srcstep, const size_t dststep, int cols, int rows){
dim3 blDim(32,8);
dim3 grDim(divUp(cols, blDim.x), divUp(rows,blDim.y));
std::cout << "calling kernel from func\n";
funcKernel<<<grDim,blDim>>>(srcptr,dstptr,srcstep,dststep,cols,rows);
std::cout << "done with kernel call\n";
cudaDeviceSynchronize();
}
//.cpp code
void callKernel(const GpuMat &src, GpuMat &dst){
float* p = (float*)src.data;
float* p2 =(float*) dst.data;
func(p,p2,src.step,dst.step,src.cols,src.rows);
}
int main(){
Mat input = imread("cat.jpg",0);
Mat float_input;
input.convertTo(float_input,CV_32FC1);
GpuMat d_frame,d_output;
Size size = float_input.size();
d_frame.upload(float_input);
d_output.create(size,CV_32FC1);
callKernel(d_frame,d_output);
Mat output(d_output);
return 0;
}
When I run the program my compiler tells me this:
OpenCV Error: Gpu API call (an illegal memory access was encountered) in copy, file /home/mobile/opencv-2.4.9/modules/dynamicuda/include/opencv2/dynamicuda/dynamicuda.hpp, line 882 terminate called after throwing an instance of 'cv::Exception' what(): /home/mobile/opencv-2.4.9/modules/dynamicuda/include/opencv2/dynamicuda/dynamicuda.hpp:882: error: (-217) an illegal memory access was encountered in function copy
You can use cv::cuda::PtrStp<>
or cv::cuda::PtrStpSz<>
to write your own kernel (so you have not to use the step-Parameter for the GpuMat and it simplifies your code a little bit :D):
Kernel:
__global__ void myKernel(const cv::cuda::PtrStepSzf input,
cv::cuda::PtrStepSzf output)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x <= input.cols - 1 && y <= input.rows - 1 && y >= 0 && x >= 0)
{
output(y, x) = input(y, x);
}
}
Notice: cv::cuda::PtrStep<>
: without size information cv::cuda::PtrStepSz<>
: with size informationcv::cuda::PtrStepSzb
: for unsigned char Mats (CV_8U)cv::cuda::PtrStepSzf
: for float Mats (CV_32F)cv::cuda::PtrStep<cv::Point2f>
: example for other type
The Kernel call:
void callKernel(cv::InputArray _input,
cv::OutputArray _output,
cv::cuda::Stream _stream)
{
const cv::cuda::GpuMat input = _input.getGpuMat();
_output.create(input.size(), input.type());
cv::cuda::GpuMat output = _output.getGpuMat();
dim3 cthreads(16, 16);
dim3 cblocks(
static_cast<int>(std::ceil(input1.size().width /
static_cast<double>(cthreads.x))),
static_cast<int>(std::ceil(input1.size().height /
static_cast<double>(cthreads.y))));
cudaStream_t stream = cv::cuda::StreamAccessor::getStream(_stream);
myKernel<<<cblocks, cthreads, 0, stream>>>(input, output);
cudaSafeCall(cudaGetLastError());
}
You can call this function using cv::cuda::GpuMat
:
callKernel(d_frame, d_output, cv::cuda::Stream());
You are treating image step
as if it is a float
offset. It is a byte offset from one row to the next.
Try something like this instead:
const float* rowsrcptr= (const float *)(((char *)srcptr)+rowInd*srcstep);
float* rowdstPtr= (float *) (((char *)dstptr)+rowInd*dststep);
from the documentation:
step – Number of bytes each matrix row occupies.
It's also a good idea to add proper cuda error checking to your code (e.g. to func
). And you can run your code with cuda-memcheck
to see the actual kernel failure generating the invalid reads/writes.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With