Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

CUDA C programming with 2 video cards

Tags:

c

cuda

nvidia

I am very new to CUDA programming and was reading the 'CUDA C Programming Guide' provided by nvidia. (http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf)

In the page 25, it has the following C code that does the matrix multiplication. Can you please tell me how can I make that code run on two devices? (if I have two nvida CUDA capable cards installed in my computer). Can you please show me with an example.

// Matrices are stored in row-major order: 
// M(row, col) = *(M.elements + row * M.stride + col) 
typedef struct { 
    int width; 
    int height; 
    int stride; 
    float* elements; 
} Matrix; 

// Get a matrix element 
__device__ float GetElement(const Matrix A, int row, int col) 
{ 
    return A.elements[row * A.stride + col]; 
} 

// Set a matrix element 
__device__ void SetElement(Matrix A, int row, int col, float value) 
{ 
    A.elements[row * A.stride + col] = value; 
} 

// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is 
// located col sub-matrices to the right and row sub-matrices down 
// from the upper-left corner of A 
__device__ Matrix GetSubMatrix(Matrix A, int row, int col) 
{ 
    Matrix Asub; 
    Asub.width = BLOCK_SIZE; 
    Asub.height = BLOCK_SIZE; 
    Asub.stride = A.stride; 
    Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row + BLOCK_SIZE * col]; 
    return Asub;
    } 

// Thread block size 
#define BLOCK_SIZE 16 

// Forward declaration of the matrix multiplication kernel 
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix); 

// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE 
void MatMul(const Matrix A, const Matrix B, Matrix C) 
{ 
    // Load A and B to device memory 
    Matrix d_A; 
    d_A.width = d_A.stride = A.width; d_A.height = A.height; 
    size_t size = A.width * A.height * sizeof(float); 
    cudaMalloc(&d_A.elements, size); 
    cudaMemcpy(d_A.elements, A.elements, size, cudaMemcpyHostToDevice); 
    Matrix d_B; 
    d_B.width = d_B.stride = B.width; d_B.height = B.height; 
    size = B.width * B.height * sizeof(float); 
    cudaMalloc(&d_B.elements, size); 
    cudaMemcpy(d_B.elements, B.elements, size, cudaMemcpyHostToDevice); 

    // Allocate C in device memory 
    Matrix d_C; 
    d_C.width = d_C.stride = C.width; d_C.height = C.height; 
    size = C.width * C.height * sizeof(float); 
    cudaMalloc(&d_C.elements, size); 

    // Invoke kernel 
    dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); 
    dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y); 
    MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C); 

    // Read C from device memory 
    cudaMemcpy(C.elements, d_C.elements, size, cudaMemcpyDeviceToHost); 

    // Free device memory 
    cudaFree(d_A.elements); 
    cudaFree(d_B.elements); 
    cudaFree(d_C.elements); 
} 

// Matrix multiplication kernel called by MatMul() 
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C) 
{ 
    // Block row and column 
    int blockRow = blockIdx.y; 
    int blockCol = blockIdx.x; 

    // Each thread block computes one sub-matrix Csub of C 
    Matrix Csub = GetSubMatrix(C, blockRow, blockCol);

    // Each thread computes one element of Csub 
    // by accumulating results into Cvalue 
    float Cvalue = 0; 

    // Thread row and column within Csub 
    int row = threadIdx.y; 
    int col = threadIdx.x; 

    // Loop over all the sub-matrices of A and B that are 
    // required to compute Csub 
    // Multiply each pair of sub-matrices together 
    // and accumulate the results 
    for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) 
    { 
        // Get sub-matrix Asub of A 
        Matrix Asub = GetSubMatrix(A, blockRow, m); 
        // Get sub-matrix Bsub of B 
        Matrix Bsub = GetSubMatrix(B, m, blockCol); 

        // Shared memory used to store Asub and Bsub respectively 
        __shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; 
        __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; 

        // Load Asub and Bsub from device memory to shared memory 
        // Each thread loads one element of each sub-matrix 
        As[row][col] = GetElement(Asub, row, col); 
        Bs[row][col] = GetElement(Bsub, row, col); 

        // Synchronize to make sure the sub-matrices are loaded 
        // before starting the computation 
        __syncthreads(); 

        // Multiply Asub and Bsub together 
        for (int e = 0; e < BLOCK_SIZE; ++e) 
            Cvalue += As[row][e] * Bs[e][col]; 

        // Synchronize to make sure that the preceding 
        // computation is done before loading two new 
        // sub-matrices of A and B in the next iteration 
        __syncthreads(); 
    } 

    // Write Csub to device memory 
    // Each thread writes one element 
    SetElement(Csub, row, col, Cvalue); 
}
like image 858
Dale B Avatar asked Jul 16 '12 09:07

Dale B


People also ask

Does CUDA work with multiple GPUs?

Scenario 2: Multiple GPUs per process In a similar vein to the multi-process solution, one can work with multiple devices from within a single process by calling CUDA.

Can you use C with CUDA?

Using the CUDA Toolkit you can accelerate your C or C++ applications by updating the computationally intensive portions of your code to run on GPUs. To accelerate your applications, you can call functions from drop-in libraries as well as develop custom applications using languages including C, C++, Fortran and Python.

Is CUDA based on C or C++?

CUDA C is essentially C/C++ with a few extensions that allow one to execute functions on the GPU using many threads in parallel.


2 Answers

There is no "automatic" way to run a CUDA kernel on multiple GPUs.

You will need to devise a way to decompose the matrix multiplication problem into independent operations that can be run in parallel (so one on each GPU in parallel). As a simple example:

C = A.B is equivalent to C = [A].[B1|B2] = [A.B1|A.B2] where B1 and B2 are suitably sized matrices containing the columns of the matrix B and | denotes columnwise concantenation. You can calculate A.B1 and A.B2 as separate matrix multiplication operations, and then perform the concatenation when copying the resulting submatrices back to host memory.

Once you have a suitable decomposition scheme, you then implement it using the standard multi-gpu facilities in the CUDA 4.x API. For a great overview of multi-GPU programming using the CUDA APIs, I recommend watching Paulius Micikevicius' excellent talk from GTC 2012, which available as a streaming video and PDF here.

like image 85
talonmies Avatar answered Sep 27 '22 22:09

talonmies


The basics are described in the CUDA C Programming Guide under section 3.2.6.

Basically, you can set on which GPU your current host thread operates on by calling cudaSetDevice(). Still you have to write your own code, to decompose your routines to be split across multiple GPUs.

like image 37
Stephan Dollberg Avatar answered Sep 27 '22 21:09

Stephan Dollberg