Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Crop nan rows and columns of a matrix, but keep it square

I have a square matrix with > 1,000 rows & columns. In many fields at the "border" there is nan, for example:

grid = [[nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan],
        [nan, nan,   1, nan, nan],
        [nan,   2,   3,   2, nan],
        [  1,   2,   2,   1, nan]]

Now I want to eliminate all rows and columns where I only have nan. This would be the 1. and 2. row and the last column. But I also want to receive a square matrix, so the number of the eliminated rows must be equal to the number of eliminated columns. In this example, I want to get this:

grid = [[nan, nan, nan, nan],
        [nan, nan,   1, nan],
        [nan,   2,   3,   2],
        [  1,   2,   2,   1]]

I'm sure I could solve this with a loop: check every column & row if there is only nan inside and in the end I use numpy.delete to delete the rows & columns I found (but only the minimal number, because of getting a square). But I hope anyone can help me with a better solution or a good library.

like image 917
Munchkin Avatar asked Dec 12 '13 12:12

Munchkin


2 Answers

This works, zipping the indices of rows\cols is key so they always have the same length, hence preserving the squareness of the matrix.

nans_in_grid = np.isnan(grid)
nan_rows = np.all(nans_in_grid, axis=0)
nan_cols = np.all(nans_in_grid, axis=1)

indicies_to_remove = zip(np.nonzero(nan_rows)[0], np.nonzero(nan_cols)[0])
y_indice_to_remove, x_indice_to_remove = zip(*indicies_to_remove)

tmp = grid[[x for x in range(grid.shape[0]) if x not in x_indice_to_remove], :]
grid = tmp[:, [y for y in range(grid.shape[1]) if y not in y_indice_to_remove]]

Continuing on Mr E, solution, and then padding the results works also.

def pad_to_square(a, pad_value=np.nan):
    m = a.reshape((a.shape[0], -1))
    padded = pad_value * np.ones(2 * [max(m.shape)], dtype=m.dtype)
    padded[0:m.shape[0], 0:m.shape[1]] = m
    return padded

g = np.isnan(grid) 
grid = pad_to_square(grid[:, ~np.all(g, axis=0)][~np.all(g, axis=1)])

Another solution, building on the other answer here. Significantly faster for larger matrixes.

shape = grid.shape[0]

first_col  = (i for i,col in enumerate(grid.T) if np.isfinite(col).any() == True).next()
last_col  = (shape-i-1 for i,col in enumerate(grid.T[::-1]) if np.isfinite(col).any() == True).next()
first_row = (i for i,row in enumerate(grid) if np.isfinite(row).any() == True).next()
last_row  = (shape-i-1 for i,row in enumerate(grid[::-1]) if np.isfinite(row).any() == True).next()

row_len = last_row - first_row
col_len = last_col - first_col
delta_len = row_len - col_len
if delta_len == 0:
    pass
elif delta_len < 0:
    first_row = first_row - abs(delta_len)
    if first_row < 0:
        delta_len = first_row
        first_row = 0
        last_row += abs(delta_len)
elif delta_len > 0:
    first_col -= abs(delta_len)
    if first_col < 0:
        delta_len = first_col
        first_col = 0
        last_col += abs(delta_len)

grid =  grid[first_row:last_row+1, first_col:last_col+1]
like image 99
M4rtini Avatar answered Sep 18 '22 17:09

M4rtini


import numpy as np
nan = np.nan
grid = [[nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan],
        [nan, nan,   1, nan, nan],
        [nan,   2,   3,   2, nan],
        [  1,   2,   2,   1, nan]]
g = np.array(grid)
cols = np.isnan(g).all(axis=0)
rows = np.isnan(g).all(axis=1)
first_col = np.where(cols==False)[0][0]
last_col = len(cols) - np.where(cols[::-1]==False)[0][0] -1
first_row = np.where(rows==False)[0][0]
last_row = len(rows) - np.where(rows[::-1]==False)[0][0] -1
row_len = last_row - first_row
col_len = last_col - first_col
delta_len = row_len - col_len
if delta_len == 0:
    pass
elif delta_len < 0:
    first_row = first_row - abs(delta_len)
    if first_row < 0:
        delta_len = first_row
        first_row = 0
        last_row += abs(delta_len)
elif delta_len > 0:
    first_col -= abs(delta_len)
    if first_col < 0:
        delta_len = first_col
        first_col = 0
        last_col += abs(delta_len)
print g[first_row:last_row+1, first_col:last_col+1]

Output:

[[ nan  nan  nan  nan]
 [ nan  nan   1.  nan]
 [ nan   2.   3.   2.]
 [  1.   2.   2.   1.]]
like image 34
cyborg Avatar answered Sep 20 '22 17:09

cyborg