You don't need to use a subclass of Thread
to make this work - take a look at the simple example I'm posting below to see how:
from threading import Thread
from time import sleep
def threaded_function(arg):
for i in range(arg):
print("running")
sleep(1)
if __name__ == "__main__":
thread = Thread(target = threaded_function, args = (10, ))
thread.start()
thread.join()
print("thread finished...exiting")
Here I show how to use the threading module to create a thread which invokes a normal function as its target. You can see how I can pass whatever arguments I need to it in the thread constructor.
There are a few problems with your code:
def MyThread ( threading.thread ):
If you really want to do this with only functions, you have two options:
With threading:
import threading
def MyThread1():
pass
def MyThread2():
pass
t1 = threading.Thread(target=MyThread1, args=[])
t2 = threading.Thread(target=MyThread2, args=[])
t1.start()
t2.start()
With thread:
import thread
def MyThread1():
pass
def MyThread2():
pass
thread.start_new_thread(MyThread1, ())
thread.start_new_thread(MyThread2, ())
Doc for thread.start_new_thread
I tried to add another join(), and it seems worked. Here is code
from threading import Thread
from time import sleep
def function01(arg,name):
for i in range(arg):
print(name,'i---->',i,'\n')
print (name,"arg---->",arg,'\n')
sleep(1)
def test01():
thread1 = Thread(target = function01, args = (10,'thread1', ))
thread1.start()
thread2 = Thread(target = function01, args = (10,'thread2', ))
thread2.start()
thread1.join()
thread2.join()
print ("thread finished...exiting")
test01()
You can use the target
argument in the Thread
constructor to directly pass in a function that gets called instead of run
.
Did you override the run() method? If you overrided __init__
, did you make sure to call the base threading.Thread.__init__()
?
After starting the two threads, does the main thread continue to do work indefinitely/block/join on the child threads so that main thread execution does not end before the child threads complete their tasks?
And finally, are you getting any unhandled exceptions?
Python 3 has the facility of Launching parallel tasks. This makes our work easier.
It has for thread pooling and Process pooling.
The following gives an insight:
ThreadPoolExecutor Example
import concurrent.futures
import urllib.request
URLS = ['http://www.foxnews.com/',
'http://www.cnn.com/',
'http://europe.wsj.com/',
'http://www.bbc.co.uk/',
'http://some-made-up-domain.com/']
# Retrieve a single page and report the URL and contents
def load_url(url, timeout):
with urllib.request.urlopen(url, timeout=timeout) as conn:
return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
# Start the load operations and mark each future with its URL
future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
for future in concurrent.futures.as_completed(future_to_url):
url = future_to_url[future]
try:
data = future.result()
except Exception as exc:
print('%r generated an exception: %s' % (url, exc))
else:
print('%r page is %d bytes' % (url, len(data)))
Another Example
import concurrent.futures
import math
PRIMES = [
112272535095293,
112582705942171,
112272535095293,
115280095190773,
115797848077099,
1099726899285419]
def is_prime(n):
if n % 2 == 0:
return False
sqrt_n = int(math.floor(math.sqrt(n)))
for i in range(3, sqrt_n + 1, 2):
if n % i == 0:
return False
return True
def main():
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)):
print('%d is prime: %s' % (number, prime))
if __name__ == '__main__':
main()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With