I have a Numpy array consisting of a list of lists, representing a two-dimensional array with row labels and column names as shown below:
data = array([['','Col1','Col2'],['Row1',1,2],['Row2',3,4]])
I'd like the resulting DataFrame to have Row1 and Row2 as index values, and Col1, Col2 as header values
I can specify the index as follows:
df = pd.DataFrame(data,index=data[:,0]),
however I am unsure how to best assign column headers.
To create an index, from a column, in Pandas dataframe you use the set_index() method. For example, if you want the column “Year” to be index you type <code>df. set_index(“Year”)</code>. Now, the set_index() method will return the modified dataframe as a result.
Since a DataFrame is similar to a 2D Numpy array, we can create one from a Numpy ndarray . You should remember that the input Numpy array must be 2D, otherwise you will get a ValueError. If you pass a raw Numpy ndarray , the index and column names start at 0 by default.
You need to specify data
, index
and columns
to DataFrame
constructor, as in:
>>> pd.DataFrame(data=data[1:,1:], # values ... index=data[1:,0], # 1st column as index ... columns=data[0,1:]) # 1st row as the column names
edit: as in the @joris comment, you may need to change above to np.int_(data[1:,1:])
to have correct data type.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With