I have the following dataframe:
id Lat Lon Year Area State
50319 -36.0629 -62.3423 2019 90 Iowa
18873 -36.0629 -62.3423 2017 90 Iowa
18876 -36.0754 -62.327 2017 124 Illinois
18878 -36.0688 -62.3353 2017 138 Kansas
I want to create a new column which assigns a unique identifier based on whether the columns Lat
, Lon
and Area
have the same values. E.g. in this case rows 1 and 2 have the same values in those columns and will be given the same unique identifier 0_Iowa
where Iowa
comes from the State
column. I tried using a for loop but is there a more pythonic way to do it?
id Lat Lon Year Area State unique_id
50319 -36.0629 -62.3423 2019 90 Iowa 0_Iowa
18873 -36.0629 -62.3423 2017 90 Iowa 0_Iowa
18876 -36.0754 -62.327 2017 124 Illinois 1_Illinois
18878 -36.0688 -62.3353 2017 138 Kansas 2_Kansas
I'd go with groupby.ngroup
setting sort=False
for the grouping and str.cat
to concatenate with State
setting a separator:
df['Sate'] = (df.groupby(['Lat','Lon','Area'], sort=False)
.ngroup()
.astype(str)
.str.cat(df.State, sep='_'))
print(df)
id Lat Lon Year Area State Sate
0 50319 -36.0629 -62.3423 2019 90 Iowa 0_Iowa
1 18873 -36.0629 -62.3423 2017 90 Iowa 0_Iowa
2 18876 -36.0754 -62.3270 2017 124 Illinois 1_Illinois
3 18878 -36.0688 -62.3353 2017 138 Kansas 2_Kansas
1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With