Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Create trading holiday calendar with Pandas

I'm trying to create a Trading calendar using Pandas. I'm able to create a cal instance based on the USFederalHolidayCalendar. The USFederalHolidayCalendar is not consistent with the Trading calendar in that the Trading calendar doesn't include Columbus Day and Veteran's Day. However, the Trading calendar includes Good Friday (not included in the USFederalHolidayCalendar). Everything except for the last line in following code works:

from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory, GoodFriday
from datetime import datetime

cal = get_calendar('USFederalHolidayCalendar')  # Create calendar instance
cal.rules.pop(7)                                # Remove Veteran's Day rule
cal.rules.pop(6)                                # Remove Columbus Day rule
tradingCal = HolidayCalendarFactory('TradingCalendar', cal, GoodFriday)

The tradingCal instance seems to work in that I'm able to view the Holiday rules.

In[10]: tradingCal.rules
Out[10]: 
[Holiday: Labor Day (month=9, day=1, offset=<DateOffset: kwds={'weekday': MO(+1)}>),
 Holiday: Presidents Day (month=2, day=1, offset=<DateOffset: kwds={'weekday': MO(+3)}>),
 Holiday: Good Friday (month=1, day=1, offset=[<Easter>, <-2 * Days>]),
 Holiday: Dr. Martin Luther King Jr. (month=1, day=1, offset=<DateOffset: kwds={'weekday': MO(+3)}>),
 Holiday: New Years Day (month=1, day=1, observance=<function nearest_workday at 0x000000000A190BA8>),
 Holiday: Thanksgiving (month=11, day=1, offset=<DateOffset: kwds={'weekday': TH(+4)}>),
 Holiday: July 4th (month=7, day=4, observance=<function nearest_workday at 0x000000000A190BA8>),
 Holiday: Christmas (month=12, day=25, observance=<function nearest_workday at 0x000000000A190BA8>),
 Holiday: MemorialDay (month=5, day=31, offset=<DateOffset: kwds={'weekday': MO(-1)}>)]

When I try to list the holidays in a date range, I get the following error:

In[11]: tradingCal.holidays(datetime(2014, 12, 31), datetime(2016, 12, 31))
Traceback (most recent call last):
  File "C:\Python27\lib\site-packages\IPython\core\interactiveshell.py", line 3035, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-12-2708cd2db7a0>", line 1, in <module>
    tradingCal.holidays(datetime(2014, 12, 31), datetime(2016, 12, 31))
TypeError: unbound method holidays() must be called with TradingCalendar instance as first argument (got datetime instance instead)

Any ideas?

like image 788
vlmercado Avatar asked Oct 13 '15 04:10

vlmercado


3 Answers

Perhaps it is more straightforward to create the trade calendar from scratch, like so:

import datetime as dt

from pandas.tseries.holiday import AbstractHolidayCalendar, Holiday, nearest_workday, \
    USMartinLutherKingJr, USPresidentsDay, GoodFriday, USMemorialDay, \
    USLaborDay, USThanksgivingDay


class USTradingCalendar(AbstractHolidayCalendar):
    rules = [
        Holiday('NewYearsDay', month=1, day=1, observance=nearest_workday),
        USMartinLutherKingJr,
        USPresidentsDay,
        GoodFriday,
        USMemorialDay,
        Holiday('USIndependenceDay', month=7, day=4, observance=nearest_workday),
        USLaborDay,
        USThanksgivingDay,
        Holiday('Christmas', month=12, day=25, observance=nearest_workday)
    ]


def get_trading_close_holidays(year):
    inst = USTradingCalendar()

    return inst.holidays(dt.datetime(year-1, 12, 31), dt.datetime(year, 12, 31))


if __name__ == '__main__':
    print(get_trading_close_holidays(2016))
    #    DatetimeIndex(['2016-01-01', '2016-01-18', '2016-02-15', '2016-03-25',
    #                   '2016-05-30', '2016-07-04', '2016-09-05', '2016-11-24',
    #                   '2016-12-26'],
    #                  dtype='datetime64[ns]', freq=None)
like image 54
Pierre Boutquin Avatar answered Oct 16 '22 14:10

Pierre Boutquin


If it helps, I had a similar need for exchange trading calendars. There was some excellent code buried in the Zipline project by Quantopian. I extracted out the relevant part and created a new project for creating market exchange trading calendars in pandas. The links are here, with some of the functionality described below.

https://github.com/rsheftel/pandas_market_calendars

https://pypi.python.org/pypi/pandas-market-calendars

Here is what it can do by creating a pandas DatetimeIndex of all of the valid open hours for the NYSE:

import pandas_market_calendars as mcal
nyse = mcal.get_calendar('NYSE')

early = nyse.schedule(start_date='2012-07-01', end_date='2012-07-10')
early

                  market_open             market_close
=========== ========================= =========================
2012-07-02 2012-07-02 13:30:00+00:00 2012-07-02 20:00:00+00:00
2012-07-03 2012-07-03 13:30:00+00:00 2012-07-03 17:00:00+00:00
2012-07-05 2012-07-05 13:30:00+00:00 2012-07-05 20:00:00+00:00
2012-07-06 2012-07-06 13:30:00+00:00 2012-07-06 20:00:00+00:00
2012-07-09 2012-07-09 13:30:00+00:00 2012-07-09 20:00:00+00:00
2012-07-10 2012-07-10 13:30:00+00:00 2012-07-10 20:00:00+00:00

mcal.date_range(early, frequency='1D')

DatetimeIndex(['2012-07-02 20:00:00+00:00', '2012-07-03 17:00:00+00:00',
               '2012-07-05 20:00:00+00:00', '2012-07-06 20:00:00+00:00',
               '2012-07-09 20:00:00+00:00', '2012-07-10 20:00:00+00:00'],
               dtype='datetime64[ns, UTC]', freq=None)

mcal.date_range(early, frequency='1H')

DatetimeIndex(['2012-07-02 14:30:00+00:00', '2012-07-02 15:30:00+00:00',
               '2012-07-02 16:30:00+00:00', '2012-07-02 17:30:00+00:00',
               '2012-07-02 18:30:00+00:00', '2012-07-02 19:30:00+00:00',
               '2012-07-02 20:00:00+00:00', '2012-07-03 14:30:00+00:00',
               '2012-07-03 15:30:00+00:00', '2012-07-03 16:30:00+00:00',
               '2012-07-03 17:00:00+00:00', '2012-07-05 14:30:00+00:00',
               '2012-07-05 15:30:00+00:00', '2012-07-05 16:30:00+00:00',
               '2012-07-05 17:30:00+00:00', '2012-07-05 18:30:00+00:00',
               '2012-07-05 19:30:00+00:00', '2012-07-05 20:00:00+00:00',
               '2012-07-06 14:30:00+00:00', '2012-07-06 15:30:00+00:00',
               '2012-07-06 16:30:00+00:00', '2012-07-06 17:30:00+00:00',
               '2012-07-06 18:30:00+00:00', '2012-07-06 19:30:00+00:00',
               '2012-07-06 20:00:00+00:00', '2012-07-09 14:30:00+00:00',
               '2012-07-09 15:30:00+00:00', '2012-07-09 16:30:00+00:00',
               '2012-07-09 17:30:00+00:00', '2012-07-09 18:30:00+00:00',
               '2012-07-09 19:30:00+00:00', '2012-07-09 20:00:00+00:00',
               '2012-07-10 14:30:00+00:00', '2012-07-10 15:30:00+00:00',
               '2012-07-10 16:30:00+00:00', '2012-07-10 17:30:00+00:00',
               '2012-07-10 18:30:00+00:00', '2012-07-10 19:30:00+00:00',
               '2012-07-10 20:00:00+00:00'],
              dtype='datetime64[ns, UTC]', freq=None)

If you just want to get the pandas Holiday Calendar that can be used in other pandas functions that take that as an argument:

holidays = nyse.holidays()

holidays.holidays[-5:]
(numpy.datetime64('2030-05-27'),
 numpy.datetime64('2030-07-04'),
 numpy.datetime64('2030-09-02'),
 numpy.datetime64('2030-11-28'),
 numpy.datetime64('2030-12-25'))
like image 20
Ryan Sheftel Avatar answered Oct 16 '22 15:10

Ryan Sheftel


You have to create new instance of class: cal1 = tradingCal(). This works for me.

from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory, GoodFriday
from datetime import datetime

cal = get_calendar('USFederalHolidayCalendar')  # Create calendar instance
cal.rules.pop(7)                                # Remove Veteran's Day rule
cal.rules.pop(6)                                # Remove Columbus Day rule
tradingCal = HolidayCalendarFactory('TradingCalendar', cal, GoodFriday)
print tradingCal.rules

#new instance of class
cal1 = tradingCal()

print cal1.holidays(datetime(2014, 12, 31), datetime(2016, 12, 31))

#DatetimeIndex(['2015-01-01', '2015-01-19', '2015-02-16', '2015-04-03',
#               '2015-05-25', '2015-07-03', '2015-09-07', '2015-11-26',
#               '2015-12-25', '2016-01-01', '2016-01-18', '2016-02-15',
#              '2016-03-25', '2016-05-30', '2016-07-04', '2016-09-05',
#               '2016-11-24', '2016-12-26'],
#              dtype='datetime64[ns]', freq=None, tz=None)
like image 16
jezrael Avatar answered Oct 16 '22 15:10

jezrael