There are a couple of SO answers on creating a custom scalar summary in TF (here and here), but I can't find anything on creating a custom histogram summary. The documentation seems to be very lacking for custom summaries. I have a numpy array of that I'd like to make a summary of - any ideas on how?
(tf.Summary.Value has a histo field that I tried using, but it requires a tensorflow::HistogramProto; there's no documentation on that class either, so I'm at a loss on how to make it. I've tried creating a minimal failing example below).
import tensorflow as tf
import numpy as np
sess = tf.Session()
means_placeholder = tf.placeholder(tf.float32)
tf.summary.histogram('means', means_placeholder)
summaries = tf.summary.merge_all()
writer = tf.summary.FileWriter('./summaries')
means = np.random.random(10)
writer.add_summary(tf.Summary(value=[tf.Summary.Value(tag='means', histo=means)]))
This piece of code works:
import tensorflow as tf
import numpy as np
def log_histogram(writer, tag, values, step, bins=1000):
# Convert to a numpy array
values = np.array(values)
# Create histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill fields of histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
# Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1]
# See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto#L30
# Thus, we drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
writer.add_summary(summary, step)
writer.flush()
sess = tf.Session()
placeholder = tf.placeholder(tf.float32)
tf.summary.histogram('N(0,1)', placeholder)
summaries = tf.summary.merge_all()
writer = tf.summary.FileWriter('./summaries')
mu, sigma = 0, 0.1 # mean and standard deviation
s = np.random.normal(mu, 1, 10000)
log_histogram(writer, 'N(0,1)', s, 1, bins=100)
The source.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With