I have a dataset wherein I am trying to determine the number of risk factors per person. So I have the following data:
Person_ID Age Smoker Diabetes
001 30 Y N
002 45 N N
003 27 N Y
004 18 Y Y
005 55 Y Y
Each attribute (Age, Smoker, Diabetes) has its own condition to determine whether it is a risk factor. So if Age >= 45, it's a risk factor. Smoker and Diabetes are risk factors if they are "Y". What I would like is to add a column that adds up the number of risk factors for each person based on those conditions. So the data would look like this:
Person_ID Age Smoker Diabetes Risk_Factors
001 30 Y N 1
002 25 N N 0
003 27 N Y 1
004 18 Y Y 2
005 55 Y Y 3
I have a sample dataset that I was fooling around with in Excel, and the way I did it there was to use the COUNTIF formula like so:
=COUNTIF(B2,">45") + COUNTIF(C2,"=Y") + COUNTIF(D2,"=Y")
However, the actual dataset that I will be using is way too large for Excel, so I'm learning pandas for python. I wish I could provide examples of what I've already tried, but frankly I don't even know where to start. I looked at this question, but it doesn't really address what to do about applying it to an entire new column using different conditions from multiple columns. Any suggestions?
I would do this the following way.
(Note that this is simpler if your Smoker and Diabetes column is already boolean (True/False) instead of in strings.)
It might look like this:
df = pd.DataFrame({'Age': [30,45,27,18,55],
'Smoker':['Y','N','N','Y','Y'],
'Diabetes': ['N','N','Y','Y','Y']})
Age Diabetes Smoker
0 30 N Y
1 45 N N
2 27 Y N
3 18 Y Y
4 55 Y Y
#Step 1
risk1 = df.Age > 45
risk2 = df.Smoker == "Y"
risk3 = df.Diabetes == "Y"
risk_df = pd.concat([risk1,risk2,risk3],axis=1)
Age Smoker Diabetes
0 False True False
1 False False False
2 False False True
3 False True True
4 True True True
df['Risk_Factors'] = risk_df.sum(axis=1)
Age Diabetes Smoker Risk_Factors
0 30 N Y 1
1 45 N N 0
2 27 Y N 1
3 18 Y Y 2
4 55 Y Y 3
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With