To count the subsequences of length 4 of a string of length n which are divisible by 9.
For example if the input string is 9999 then cnt=1
My approach is similar to Brute Force and takes O(n^3).Any better approach than this?
If you want to check if a number is divisible by 9, You better look here.
I will describe the method in short:
checkDividedByNine(String pNum) :
If pNum.length < 1
return false
If pNum.length == 1
return toInt(pNum) == 9;
Sum = 0
For c in pNum:
Sum += toInt(pNum)
return checkDividedByNine(toString(Sum))
So you can reduce the running time to less than O(n^3).
EDIT: If you need very fast algorithm, you can use pre-processing in order to save for each possible 4-digit number, if it is divisible by 9. (It will cost you 10000 in memory)
EDIT 2: Better approach: you can use dynamic programming:
For string S in length N:
D[i,j,k] = The number of subsequences of length j in the string S[i..N] that their value modulo 9 == k.
Where 0 <= k <= 8, 1 <= j <= 4, 1 <= i <= N.
D[i,1,k] = simply count the number of elements in S[i..N] that = k(mod 9).
D[N,j,k] = if j==1 and (S[N] modulo 9) == k, return 1. Otherwise, 0.
D[i,j,k] = max{ D[i+1,j,k], D[i+1,j-1, (k-S[i]+9) modulo 9]}.
And you return D[1,4,0].
You get a table in size - N x 9 x 4.
Thus, the overall running time, assuming calculating modulo takes O(1), is O(n).
Assuming that the subsequence has to consist of consecutive digits, you can scan from left to right, keeping track of what order the last 4 digits read are in. That way, you can do a linear scan and just apply divisibility rules.
If the digits are not necessarily consecutive, then you can do some finangling with lookup tables. The idea is that you can create a 3D array named table
such that table[i][j][k]
is the number of sums of i
digits up to index j
such that the sum leaves a remainder of k
when divided by 9. The table itself has size 45n (i
goes from 0 to 4, j
goes from 0 to n-1
, and k
goes from 0 to 8).
For the recursion, each table[i][j][k]
entry relies on table[i-1][j-1][x]
and table[i][j-1][x]
for all x
from 0 to 8. Since each entry update takes constant time (at least relative to n), that should get you an O(n) runtime.
How about this one:
/*NOTE: The following holds true, if the subsequences consist of digits in contagious locations */
public int countOccurrences (String s) {
int count=0;
int len = s.length();
String subs = null;
int sum;
if (len < 4)
return 0;
else {
for (int i=0 ; i<len-3 ; i++) {
subs = s.substring(i, i+4);
sum = 0;
for (int j=0; j<=3; j++) {
sum += Integer.parseInt(String.valueOf(subs.charAt(j)));
}
if (sum%9 == 0)
count++;
}
return count;
}
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With