example:
s <- "aaabaabaa"
p <- "aa"
I want to return 4, not 3 (i.e. counting the number of "aa" instances in the initial "aaa" as 2, not 1).
Is there any package to solve it? Or is there any way to count in R?
I believe that
find_overlaps <- function(p,s) {
    gg <- gregexpr(paste0("(?=",p,")"),s,perl=TRUE)[[1]]
    if (length(gg)==1 && gg==-1) 0 else length(gg)
}
find_overlaps("aa","aaabaabaa")  ## 4
find_overlaps("not_there","aaabaabaa") ## 0 
find_overlaps("aa","aaaaaaaa")  ## 7
will do what you want, which would be more clearly expressed as "finding the number of overlapping substrings within a string".
This a minor variation on Finding the indexes of multiple/overlapping matching substrings
substring might be useful here, by taking every successive pair of characters.
( ss <- sapply(2:nchar(s), function(i) substring(s, i-1, i)) )
## [1] "aa" "aa" "ab" "ba" "aa" "ab" "ba" "aa"
sum(ss %in% p)
## [1] 4
                        I needed the answer to a related more-general question. Here is what I came up with generalizing Ben Bolker's solution:
my.data <- read.table(text = '
  my.string   my.cov
     1.2...        1
     .21111        2
     ..2122        3
     ...211        2
     112111        4
     212222        1
', header = TRUE, stringsAsFactors = FALSE)
desired.result.2ch <- read.table(text = '
  my.string   my.cov   n.11   n.12   n.21   n.22
     1.2...        1      0      0      0      0
     .21111        2      3      0      1      0
     ..2122        3      0      1      1      1
     ...211        2      1      0      1      0
     112111        4      3      1      1      0
     212222        1      0      1      1      3
', header = TRUE, stringsAsFactors = FALSE)
desired.result.3ch <- read.table(text = '
  my.string   my.cov   n.111   n.112   n.121   n.122   n.222   n.221   n.212   n.211
     1.2...        1       0       0       0       0       0       0       0       0
     .21111        2       2       0       0       0       0       0       0       1
     ..2122        3       0       0       0       1       0       0       1       0
     ...211        2       0       0       0       0       0       0       0       1
     112111        4       1       1       1       0       0       0       0       1
     212222        1       0       0       0       1       2       0       1       0
', header = TRUE, stringsAsFactors = FALSE)
find_overlaps <- function(s, my.cov, p) {
    gg <- gregexpr(paste0("(?=",p,")"),s,perl=TRUE)[[1]]
    if (length(gg)==1 && gg==-1) 0 else length(gg)
}
p <- c('11', '12', '21', '22', '111', '112', '121', '122', '222', '221', '212', '211')
my.output <- matrix(0, ncol = (nrow(my.data)+1), nrow = length(p))
for(i in seq(1,length(p))) {
    my.data$p <- p[i]
    my.output[i,1] <- p[i]
    my.output[i,(2:(nrow(my.data)+1))] <-apply(my.data, 1, function(x) find_overlaps(x[1],  x[2],  x[3]))
    apply(my.data, 1, function(x) find_overlaps(x[1],  x[2],  x[3]))
}
my.output
desired.result.2ch
desired.result.3ch
pre.final.output <- matrix(t(my.output[,2:7]), ncol=length(p), nrow=nrow(my.data))
final.output <- data.frame(my.data[,1:2], t(apply(pre.final.output, 1, as.numeric)))
colnames(final.output) <- c(colnames(my.data[,1:2]), paste0('x', p))
final.output
#  my.string my.cov x11 x12 x21 x22 x111 x112 x121 x122 x222 x221 x212 x211
#1    1.2...      1   0   0   0   0    0    0    0    0    0    0    0    0
#2    .21111      2   3   0   1   0    2    0    0    0    0    0    0    1
#3    ..2122      3   0   1   1   1    0    0    0    1    0    0    1    0
#4    ...211      2   1   0   1   0    0    0    0    0    0    0    0    1
#5    112111      4   3   1   1   0    1    1    1    0    0    0    0    1
#6    212222      1   0   1   1   3    0    0    0    1    2    0    1    0
                        A tidy, and I think more readable solution is
library(tidyverse)
PatternCount <- function(text, pattern) {
    #Generate all sliding substrings
    map(seq_len(nchar(text) - nchar(pattern) + 1), 
        function(x) str_sub(text, x, x + nchar(pattern) - 1)) %>%
    #Test them against the pattern
    map_lgl(function(x) x == pattern) %>%
    #Count the number of matches
    sum
}
PatternCount("aaabaabaa", "aa")
# 4
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With