In cassandra I have a list column type. I am new to spark and scala, and have no idea where to start. In spark I want get count of each values, is it possible to do so. Below is the dataframe
+--------------------+------------+
|                  id|        data|
+--------------------+------------+
|53e5c3b0-8c83-11e...|      [b, c]|
|508c1160-8c83-11e...|      [a, b]|
|4d16c0c0-8c83-11e...|   [a, b, c]|
|5774dde0-8c83-11e...|[a, b, c, d]|
+--------------------+------------+
I want output as
+--------------------+------------+
|   value            |      count |
+--------------------+------------+
|a                   |      3     |
|b                   |      4     |
|c                   |      3     |
|d                   |      1     |
+--------------------+------------+
spark version: 1.4
Here you go :
scala> val rdd = sc.parallelize(
  Seq(
    ("53e5c3b0-8c83-11e", Array("b", "c")),
    ("53e5c3b0-8c83-11e1", Array("a", "b")),
    ("53e5c3b0-8c83-11e2", Array("a", "b", "c")),
    ("53e5c3b0-8c83-11e3", Array("a", "b", "c", "d"))))
// rdd: org.apache.spark.rdd.RDD[(String, Array[String])] = ParallelCollectionRDD[22] at parallelize at <console>:27
scala> rdd.flatMap(_._2).map((_, 1)).reduceByKey(_ + _)
// res11: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[21] at reduceByKey at <console>:30
scala> rdd.flatMap(_._2).map((_,1)).reduceByKey(_ + _).collect
// res16: Array[(String, Int)] = Array((a,3), (b,4), (c,3), (d,1))
This is also actually quite easy with the DataFrame API :
scala> val df = rdd.toDF("id", "data")
// res12: org.apache.spark.sql.DataFrame = ["id": string, "data": array<string>]
scala> df.select(explode($"data").as("value")).groupBy("value").count.show
// +-----+-----+
// |value|count|
// +-----+-----+
// |    d|    1|
// |    c|    3|
// |    b|    4|
// |    a|    3|
// +-----+-----+
                        You need something like this (from Apache Spark Examples):
val textFile = sc.textFile("hdfs://...")
val counts = textFile
             .flatMap(line => line.split(" "))
             .map(word => (word, 1))
             .reduceByKey(_ + _)
Guessing that you already have pairs, .reduceByKey(_ + _) will return what you need.
You can also try in spark shell something like this:
sc.parallelize(Array[Integer](1,1,1,2,2),3).map(x=>(x,1)).reduceByKey(_+_).foreach(println)
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With