I have dataframe
site1 time1 site2 time2 site3 time3 site4 time4 site5 time5 ... time6 site7 time7 site8 time8 site9 time9 site10 time10 target
session_id
21669 56 2013-01-12 08:05:57 55.0 2013-01-12 08:05:57 NaN NaT NaN NaT NaN NaT ... NaT NaN NaT NaN NaT NaN NaT NaN NaT 0
54843 56 2013-01-12 08:37:23 55.0 2013-01-12 08:37:23 56.0 2013-01-12 09:07:07 55.0 2013-01-12 09:07:09 NaN NaT ... NaT NaN NaT NaN NaT NaN NaT NaN NaT 0
77292 946 2013-01-12 08:50:13 946.0 2013-01-12 08:50:14 951.0 2013-01-12 08:50:15 946.0 2013-01-12 08:50:15 946.0 2013-01-12 08:50:16 ... 2013-01-12 08:50:16 948.0 2013-01-12 08:50:16 784.0 2013-01-12 08:50:16 949.0 2013-01-12 08:50:17 946.0 2013-01-12 08:50:17 0
114021 945 2013-01-12 08:50:17 948.0 2013-01-12 08:50:17 949.0 2013-01-12 08:50:18 948.0 2013-01-12 08:50:18 945.0 2013-01-12 08:50:18 ... 2013-01-12 08:50:18 947.0 2013-01-12 08:50:19 945.0 2013-01-12 08:50:19 946.0 2013-01-12 08:50:19 946.0 2013-01-12 08:50:20 0
I need to count N of columns, where site != NaN. I try to use
df[['site%s' % i for i in range(1, 11)]].count(axis=1)
but it returns me 10 to every id
Also I have tried
train_df[sites].notnull().count(axis=1)
and it also didn't help.
Desire output
21669 2
54843 4
77292 10
114021 10
I'd do this with just count
:
train_df[sites].count(axis=1)
count
specifically counts non-null values. The issue with your current implementation is that notnull
yields boolean values, and bool
s are certainly not-null, meaning they are always counted.
df
one two three four five
a -0.166778 0.501113 -0.355322 bar False
b NaN NaN NaN NaN NaN
c -0.337890 0.580967 0.983801 bar False
d NaN NaN NaN NaN NaN
e 0.057802 0.761948 -0.712964 bar True
f -0.443160 -0.974602 1.047704 bar False
g NaN NaN NaN NaN NaN
h -0.717852 -1.053898 -0.019369 bar False
df.count(axis=1)
a 5
b 0
c 5
d 0
e 5
f 5
g 0
h 5
dtype: int64
And...
df.notnull().count(axis=1)
a 5
b 5
c 5
d 5
e 5
f 5
g 5
h 5
dtype: int64
Also trading count(axis=1)
for sum()
should do the trick
train_df[sites].notnull().sum()
A simple way to find the number of missing values by row-wise is :
df.isnull().sum(axis=1)
To find the number of rows which are having more than 3 null values:
df[df.isnull().sum(axis=1) >=3]
In case if you need to drop rows which are having more than 3 null values then you can follow this code:
df = df[df.isnull().sum(axis=1) < 3]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With