Using tensorflow 2.4.1
When I run my program, I'm getting this error and can't use my gpu
.
I'm using CUDA 11.0
, cudnn 8.0
2021-02-07 03:36:18.132005: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll
WARNING:tensorflow:From D:/PycharmProjects/pythonProject/models/kpş,i.py:5: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2021-02-07 03:36:19.735127: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-02-07 03:36:19.739052: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library nvcuda.dll
2021-02-07 03:36:20.715634: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1650 computeCapability: 7.5
coreClock: 1.56GHz coreCount: 16 deviceMemorySize: 4.00GiB deviceMemoryBandwidth: 119.24GiB/s
2021-02-07 03:36:20.716281: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll
2021-02-07 03:36:20.723519: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll
2021-02-07 03:36:20.724040: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll
2021-02-07 03:36:20.729436: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cufft64_10.dll
2021-02-07 03:36:20.731800: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library curand64_10.dll
2021-02-07 03:36:20.741580: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusolver64_10.dll
2021-02-07 03:36:20.745576: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusparse64_11.dll
2021-02-07 03:36:20.746657: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'cudnn64_8.dll'; dlerror: cudnn64_8.dll not found
2021-02-07 03:36:20.746971: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
2021-02-07 03:36:20.836861: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix:
2021-02-07 03:36:20.837144: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267] 0
2021-02-07 03:36:20.837314: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1280] 0: N
2021-02-07 03:36:20.837493: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
I think I can help you with providing a cudnn64_8.dll
file (this is the download link: https://www.dll-files.com/cudnn64_8.dll.html). When you get the file, you can just put in your bin
directory. For example, usually in windows platform, you can put it into C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\bin
.
watch this video to solve this problem,
this file not found error arises due to the missing of Microsoft visual studio C++ reproducible file in the CUDA folder.
additional;
with the PyTorch in conda environment
, there is no addition CUDA and Cudnn installation, because after type conda install pytorch
, conda installs both CUDA and cudnn into that conda environment.
The missing dll file is located in the cuDNN folder. I was able to resolve the issue by copying the cudnn64_8.dll
file to the CUDA folder, i.e., C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\bin
.
cuDNN is listed as a requirement for tensorflow to work and you can download it here. You need to register a developer account first though.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With