I am trying to understand this optimized code to find cosine similarity between users matrix.
def fast_similarity(ratings,epsilon=1e-9):
# epsilon -> small number for handling dived-by-zero errors
sim = ratings.T.dot(ratings) + epsilon
norms = np.array([np.sqrt(np.diagonal(sim))])
return (sim / norms / norms.T)
If ratings =
items
u [
s [1,2,3]
e [4,5,6]
r [7,8,9]
s ]
nomrs will be equal to = [1^2 + 5^2 + 9^2]
but why we are writing sim/norms/norms.T to calculate cosine similarity? Any help is appreciated.
The cosine similarity is advantageous because even if the two similar documents are far apart by the Euclidean distance because of the size (like, the word 'cricket' appeared 50 times in one document and 10 times in another) they could still have a smaller angle between them. Smaller the angle, higher the similarity.
The higher similarity, the lower distances. When you pick the threshold for similarities for text/documents, usually a value higher than 0.5 shows strong similarities.
Cosine similarity is used as a metric in different machine learning algorithms like the KNN for determining the distance between the neighbors, in recommendation systems, it is used to recommend movies with the same similarities and for textual data, it is used to find the similarity of texts in the document.
We use the below formula to compute the cosine similarity. where A and B are vectors: A.B is dot product of A and B: It is computed as sum of element-wise product of A and B. ||A|| is L2 norm of A: It is computed as square root of the sum of squares of elements of the vector A.
Going through the code we have that:
And this means that, one the diagonal of the sim
matrix we have the result of the multiplication of each column.
You can give it a try if you want using a simple matrix:
And you can easily check that this gram matrix (that's how this matrix product is named) has this property.
Now the code defines norms
that is nothing but an array taking the diagonal of our gram matrix
and apply a sqrt on each element of it.
This will give us an array containing the norm value for each column:
So basically the norms
vector contains the norm value of each column of the result
matrix.
Once we have all those data we can evaluate the cosine similarity between those users, so we know that cosine similarity is evaluated like:
Note that :
So we have that our similarity is going to be:
So we just have to substitute the terms with our code variable to get:
And this explain why you have this line of code:
return sim / norms / norms.T
EDIT:
Since it seems that I was not clear, every time I am talking about matrix multiplication in this answer I am reffering to the DOT PRODUCT
of two matrices.
This actually means that when it's written A*B we actually develop and solve as A.T * B
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With