We can convert a string to float in Python using the float() function. This is a built-in function used to convert an object to a floating point number. Internally, the float() function calls specified object __float__() function.
pandas Convert String to FloatUse pandas DataFrame. astype() function to convert column from string/int to float, you can apply this on a specific column or on an entire DataFrame. To cast the data type to 54-bit signed float, you can use numpy. float64 , numpy.
To convert the integer to float, use the float() function in Python. Similarly, if you want to convert a float to an integer, you can use the int() function.
NOTE:
pd.convert_objects
has now been deprecated. You should usepd.Series.astype(float)
orpd.to_numeric
as described in other answers.
This is available in 0.11. Forces conversion (or set's to nan)
This will work even when astype
will fail; its also series by series
so it won't convert say a complete string column
In [10]: df = DataFrame(dict(A = Series(['1.0','1']), B = Series(['1.0','foo'])))
In [11]: df
Out[11]:
A B
0 1.0 1.0
1 1 foo
In [12]: df.dtypes
Out[12]:
A object
B object
dtype: object
In [13]: df.convert_objects(convert_numeric=True)
Out[13]:
A B
0 1 1
1 1 NaN
In [14]: df.convert_objects(convert_numeric=True).dtypes
Out[14]:
A float64
B float64
dtype: object
You can try df.column_name = df.column_name.astype(float)
. As for the NaN
values, you need to specify how they should be converted, but you can use the .fillna
method to do it.
Example:
In [12]: df
Out[12]:
a b
0 0.1 0.2
1 NaN 0.3
2 0.4 0.5
In [13]: df.a.values
Out[13]: array(['0.1', nan, '0.4'], dtype=object)
In [14]: df.a = df.a.astype(float).fillna(0.0)
In [15]: df
Out[15]:
a b
0 0.1 0.2
1 0.0 0.3
2 0.4 0.5
In [16]: df.a.values
Out[16]: array([ 0.1, 0. , 0.4])
In a newer version of pandas (0.17 and up), you can use to_numeric function. It allows you to convert the whole dataframe or just individual columns. It also gives you an ability to select how to treat stuff that can't be converted to numeric values:
import pandas as pd
s = pd.Series(['1.0', '2', -3])
pd.to_numeric(s)
s = pd.Series(['apple', '1.0', '2', -3])
pd.to_numeric(s, errors='ignore')
pd.to_numeric(s, errors='coerce')
df['MyColumnName'] = df['MyColumnName'].astype('float64')
you have to replace empty strings ('') with np.nan before converting to float. ie:
df['a']=df.a.replace('',np.nan).astype(float)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With