I have a question regarding converting a tseries.period.PeriodIndex into a datetime.
I have a DataFrame which looks like this:
colors country time_month 2010-09 xxx xxx 2010-10 xxx xxx 2010-11 xxx xxx ...
time_month is the index.
type(df.index)
returns
class 'pandas.tseries.period.PeriodIndex'
When I try to use the df for a VAR analysis (http://statsmodels.sourceforge.net/devel/vector_ar.html#vector-autoregressions-tsa-vector-ar),
VAR(mdata)
returns:
Given a pandas object and the index does not contain dates
So apparently, Period is not recognized as a datetime. Now, my question is how to convert the index (time_month) into a datetime the VAR analysis can work with?
df.index = pandas.DatetimeIndex(df.index)
returns
cannot convert Int64Index->DatetimeIndex
Thank for your help!
You can use the to_timestamp
method of PeriodIndex for this:
In [25]: pidx = pd.period_range('2012-01-01', periods=10)
In [26]: pidx
Out[26]:
<class 'pandas.tseries.period.PeriodIndex'>
[2012-01-01, ..., 2012-01-10]
Length: 10, Freq: D
In [27]: pidx.to_timestamp()
Out[27]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-01-01, ..., 2012-01-10]
Length: 10, Freq: D, Timezone: None
In older versions of Pandas the method was to_datetime
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With