I need the angular velocity expressed as a quaternion for updating the quaternion every frame with the following expression in OpenCV:
q(k)=q(k-1)*qwt;
My angular velocity is
Mat w; //1x3
I would like to obtain a quaternion form of the angles
Mat qwt; //1x4
I couldn't find information about this, any ideas?
If I understand properly you want to pass from this Axis Angle form to a quaternion.
As shown in the link, first you need to calculate the module of the angular velocity (multiplied by delta(t) between frames), and then apply the formulas.
A sample function for this would be
// w is equal to angular_velocity*time_between_frames
void quatFromAngularVelocity(Mat& qwt, const Mat& w)
{
const float x = w.at<float>(0);
const float y = w.at<float>(1);
const float z = w.at<float>(2);
const float angle = sqrt(x*x + y*y + z*z); // module of angular velocity
if (angle > 0.0) // the formulas from the link
{
qwt.at<float>(0) = x*sin(angle/2.0f)/angle;
qwt.at<float>(1) = y*sin(angle/2.0f)/angle;
qwt.at<float>(2) = z*sin(angle/2.0f)/angle;
qwt.at<float>(3) = cos(angle/2.0f);
} else // to avoid illegal expressions
{
qwt.at<float>(0) = qwt.at<float>(0)=qwt.at<float>(0)=0.0f;
qwt.at<float>(3) = 1.0f;
}
}
Almost every transformation regarding quaternions, 3D space, etc is gathered at this website.
You will find time derivatives for quaternions also.
I find it useful the explanation of the physical meaning of a quaternion, which can be seen as an axis angle where
a = angle of rotation
x,y,z = axis of rotation.
Then the conversion uses:
q = cos(a/2) + i ( x * sin(a/2)) + j (y * sin(a/2)) + k ( z * sin(a/2))
Here is explained thoroughly.
Hope this helped to make it clearer.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With