I have a numpy array which I want to convert from an object to complex. If I take that array as dtype string and convert it, there is no problem:
In[22]: bane
Out[22]: array(['1.000027337501943-7.331085223659654E-6j',
'1.0023086995640738-1.8228368353755985E-4j',
'-0.017014515914781394-0.2820013864855318j'],
dtype='|S41')
In [23]: bane.astype(dtype=complex)
Out[23]:
array([ 1.00002734 -7.33108522e-06j, 1.00230870 -1.82283684e-04j,
-0.01701452 -2.82001386e-01j])
But when it is dtype object and I try to convert it, I get an error that a float is required. Why is this?
In [24]: bane.astype(dtype=object)
Out[24]:
array(['1.000027337501943-7.331085223659654E-6j',
'1.0023086995640738-1.8228368353755985E-4j',
'-0.017014515914781394-0.2820013864855318j'], dtype=object)
In [25]: _.astype(dtype=complex)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-25-f5d89c8cc46c> in <module>()
----> 1 _.astype(dtype=complex)
TypeError: a float is required
To convert it, I use two calls to the astype method which seems clumsy:
bane_obj
Out[27]:
array(['1.000027337501943-7.331085223659654E-6j',
'1.0023086995640738-1.8228368353755985E-4j',
'-0.017014515914781394-0.2820013864855318j'], dtype=object)
In [28]: bane_obj.astype(dtype=str).astype(dtype=complex)
Out[28]:
array([ 1.00002734 -7.33108522e-06j, 1.00230870 -1.82283684e-04j,
-0.01701452 -2.82001386e-01j])
We have a method called astype(data_type) to change the data type of a numpy array. If we have a numpy array of type float64, then we can change it to int32 by giving the data type to the astype() method of numpy array. We can check the type of numpy array using the dtype class.
A data type object (an instance of numpy. dtype class) describes how the bytes in the fixed-size block of memory corresponding to an array item should be interpreted. It describes the following aspects of the data: Type of the data (integer, float, Python object, etc.)
Can an array store different data types? Yes, a numpy array can store different data String, Integer, Complex, Float, Boolean.
I think you might want to do the following, depending on what's inside the object type and if there's no padding to worry about:
bane.view(np.complex64) or
bane.view(np.complex128)
However if that does not work, which it didn't for some small tuple example I tried, the following worked:
bane.astype(np.float).view(np.complex64)
Consider using numpy structures rather than objects for the base dtype, you may have an easier time over all.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With