Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Convert Sql like custom dsl queries to ElasticSearch?

We are building our own query language similar to Mysql using antlr4. Except we only use where clause, in other words user does not enter select/from statements.

I was able to create grammar for it and generate lexers/parsers/listeners in golang.

Below our grammar file EsDslQuery.g4:

grammar EsDslQuery;

options {
language = Go;
}

query
   : leftBracket = '(' query rightBracket = ')'                             #bracketExp
   | leftQuery=query op=OR rightQuery=query                                 #orLogicalExp
   | leftQuery=query op=AND rightQuery=query                                #andLogicalExp
   | propertyName=attrPath op=COMPARISON_OPERATOR propertyValue=attrValue   #compareExp
   ;

attrPath
   : ATTRNAME ('.' attrPath)?
   ;

fragment ATTR_NAME_CHAR
   : '-' | '_' | ':' | DIGIT | ALPHA
   ;

fragment DIGIT
   : ('0'..'9')
   ;

fragment ALPHA
   : ( 'A'..'Z' | 'a'..'z' )
   ;

attrValue
   : BOOLEAN           #boolean
   | NULL              #null
   | STRING            #string
   | DOUBLE            #double
   | '-'? INT EXP?     #long
   ;

...

Query example: color="red" and price=20000 or model="hyundai" and (seats=4 or year=2001)

ElasticSearch supports sql queries with plugin here: https://github.com/elastic/elasticsearch/tree/master/x-pack/plugin/sql.

Having hard time to understand java code.

Since we have Logical Operators I am quite not sure how to get parse tree and convert it to ES query. Can somebody help/suggest ideas?

Update 1: Added more examples with corresponding ES query

Query Example 1: color="red" AND price=2000

ES query 1:

{
    "query": {
      "bool": {
        "must": [
          {
            "terms": {
              "color": [
                "red"
              ]
            }
          },
          {
            "terms": {
              "price": [
                2000
              ]
            }
          }
        ]
      }
    },
    "size": 100
  }

Query Example 2: color="red" AND price=2000 AND (model="hyundai" OR model="bmw")

ES query 2:

{
  "query": {
    "bool": {
      "must": [
        {
          "bool": {
            "must": {
              "terms": {
                "color": ["red"]
              }
            }
          }
        },
        {
          "bool": {
            "must": {
              "terms": {
                "price": [2000]
              }
            }
          }
        },
        {
          "bool": {
            "should": [
              {
                "term": {
                  "model": "hyundai"
                }
              },
              {
                "term": {
                  "region": "bmw"
                }
              }
            ]
          }
        }
      ]
    }
  },
  "size": 100
}


Query Example 3: color="red" OR color="blue"

ES query 3:

{
    "query": {
      "bool": {
        "should": [
          {
            "bool": {
              "must": {
                "terms": {
                  "color": ["red"]
                }
              }
            }
          },
          {
            "bool": {
              "must": {
                "terms": {
                    "color": ["blue"]
                }
              }
            }
          }
        ]
      }
    },
    "size": 100
  }

like image 274
omurbek Avatar asked Feb 18 '20 11:02

omurbek


People also ask

Can you use SQL with Elasticsearch?

Elasticsearch has the speed, scale, and flexibility your data needs — and it speaks SQL. Use traditional database syntax to unlock non-traditional performance, like full text search across petabytes of data with real-time results.

Why use Elasticsearch instead of SQL?

You want Elasticsearch when you're doing a lot of text search, where traditional RDBMS databases are not performing really well (poor configuration, acts as a black-box, poor performance). Elasticsearch is highly customizable, extendable through plugins. You can build robust search without much knowledge quite fast.

What is query DSL Elasticsearch?

Elasticsearch provides a full Query DSL (Domain Specific Language) based on JSON to define queries. Think of the Query DSL as an AST (Abstract Syntax Tree) of queries, consisting of two types of clauses: Leaf query clauses.


2 Answers

Working demo url: https://github.com/omurbekjk/convert-dsl-to-es-query-with-antlr, estimated time spent: ~3 weeks

After investigating antlr4 and several examples I found simple solution with listener and stack. Similar to how expressions are calculated using stack.

We need to overwrite to default base listener with ours to get triggers for each enter/exit grammar rules. Important rules are:

  1. Comparison expression (price=200, price>190)
  2. Logical operators (OR, AND)
  3. Brackets (in order to correctly build es query we need to write correct grammar file remembering operator precedence, that's why brackets are in the first place in the grammar file)

Below my custom listener code written in golang:

package parser

import (
    "github.com/olivere/elastic"
    "strings"
)

type MyDslQueryListener struct {
    *BaseDslQueryListener
    Stack []*elastic.BoolQuery
}

func (ql *MyDslQueryListener) ExitCompareExp(c *CompareExpContext) {
    boolQuery := elastic.NewBoolQuery()

    attrName := c.GetPropertyName().GetText()
    attrValue := strings.Trim(c.GetPropertyValue().GetText(), `\"`)
    // Based on operator type we build different queries, default is terms query(=)
    termsQuery := elastic.NewTermQuery(attrName, attrValue)
    boolQuery.Must(termsQuery)
    ql.Stack = append(ql.Stack, boolQuery)
}

func (ql *MyDslQueryListener) ExitAndLogicalExp(c *AndLogicalExpContext) {
    size := len(ql.Stack)
    right := ql.Stack[size-1]
    left := ql.Stack[size-2]
    ql.Stack = ql.Stack[:size-2] // Pop last two elements
    boolQuery := elastic.NewBoolQuery()
    boolQuery.Must(right)
    boolQuery.Must(left)
    ql.Stack = append(ql.Stack, boolQuery)
}

func (ql *MyDslQueryListener) ExitOrLogicalExp(c *OrLogicalExpContext) {
    size := len(ql.Stack)
    right := ql.Stack[size-1]
    left := ql.Stack[size-2]
    ql.Stack = ql.Stack[:size-2] // Pop last two elements
    boolQuery := elastic.NewBoolQuery()
    boolQuery.Should(right)
    boolQuery.Should(left)
    ql.Stack = append(ql.Stack, boolQuery)
}

And main file:

package main

import (
    "encoding/json"
    "fmt"
    "github.com/antlr/antlr4/runtime/Go/antlr"
    "github.com/omurbekjk/convert-dsl-to-es-query-with-antlr/parser"
)

func main() {
    fmt.Println("Starting here")
    query := "price=2000 OR model=\"hyundai\" AND (color=\"red\" OR color=\"blue\")"
    stream := antlr.NewInputStream(query)
    lexer := parser.NewDslQueryLexer(stream)
    tokenStream := antlr.NewCommonTokenStream(lexer, antlr.TokenDefaultChannel)
    dslParser := parser.NewDslQueryParser(tokenStream)
    tree := dslParser.Start()

    listener := &parser.MyDslQueryListener{}
    antlr.ParseTreeWalkerDefault.Walk(listener, tree)

    esQuery := listener.Stack[0]

    src, err := esQuery.Source()
    if err != nil {
        panic(err)
    }
    data, err := json.MarshalIndent(src, "", "  ")
    if err != nil {
        panic(err)
    }

    stringEsQuery := string(data)
    fmt.Println(stringEsQuery)
}

/**     Generated es query
{
  "bool": {
    "should": [
      {
        "bool": {
          "must": [
            {
              "bool": {
                "should": [
                  {
                    "bool": {
                      "must": {
                        "term": {
                          "color": "blue"
                        }
                      }
                    }
                  },
                  {
                    "bool": {
                      "must": {
                        "term": {
                          "color": "red"
                        }
                      }
                    }
                  }
                ]
              }
            },
            {
              "bool": {
                "must": {
                  "term": {
                    "model": "hyundai"
                  }
                }
              }
            }
          ]
        }
      },
      {
        "bool": {
          "must": {
            "term": {
              "price": "2000"
            }
          }
        }
      }
    ]
  }
}

*/

like image 159
omurbek Avatar answered Oct 23 '22 14:10

omurbek


Have you thought about converting your sql-like statements to query string queries?

curl -X GET "localhost:9200/_search?pretty" -H 'Content-Type: application/json' -d'
{
    "query": {
        "query_string" : {
            "query" : "(new york city) OR (big apple)",
            "default_field" : "content"
        }
    }
}
'

If your use-cases stay simple like color="red" and price=20000 or model="hyundai" and (seats=4 or year=2001), I'd go with the above. The syntax is quite powerful but the queries are guaranteed to run more slowly than the native, spelled-out DSL queries since the ES parser will need to convert them to the DSL for you.

like image 3
Joe - Elasticsearch Handbook Avatar answered Oct 23 '22 15:10

Joe - Elasticsearch Handbook