I am doing some work in embedded C with an accelerometer that returns data as a 14 bit 2's complement number. I am storing this result directly into a uint16_t
. Later in my code I am trying to convert this "raw" form of the data into a signed integer to represent / work with in the rest of my code.
I am having trouble getting the compiler to understand what I am trying to do. In the following code I'm checking if the 14th bit is set (meaning the number is negative) and then I want to invert the bits and add 1 to get the magnitude of the number.
int16_t fxls8471qr1_convert_raw_accel_to_mag(uint16_t raw, enum fxls8471qr1_fs_range range) {
int16_t raw_signed;
if(raw & _14BIT_SIGN_MASK) {
// Convert 14 bit 2's complement to 16 bit 2's complement
raw |= (1 << 15) | (1 << 14); // 2's complement extension
raw_signed = -(~raw + 1);
}
else {
raw_signed = raw;
}
uint16_t divisor;
if(range == FXLS8471QR1_FS_RANGE_2G) {
divisor = FS_DIV_2G;
}
else if(range == FXLS8471QR1_FS_RANGE_4G) {
divisor = FS_DIV_4G;
}
else {
divisor = FS_DIV_8G;
}
return ((int32_t)raw_signed * RAW_SCALE_FACTOR) / divisor;
}
This code unfortunately doesn't work. The disassembly shows me that for some reason the compiler is optimizing out my statement raw_signed = -(~raw + 1);
How do I acheive the result I desire?
The math works out on paper, but I feel like for some reason the compiler is fighting with me :(.
16 in binary is 1 0000 . Add some leading 0 's, so that the number has eight digits, 0001 0000 . That's 16 in the two's complement notation.
Signed Integer: A 16-bit signed integer ranging from -32,768 to +32,767.
To get 2's complement of binary number is 1's complement of given number plus 1 to the least significant bit (LSB). For example 2's complement of binary number 10010 is (01101) + 1 = 01110.
Therefore, the two's complement of the number – 33 is (1101 1111)2.
I would do simple arithmetic instead. The result is 14-bit signed, which is represented as a number from 0 to 2^14 - 1. Test if the number is 2^13 or above (signifying a negative) and then subtract 2^14.
int16_t fxls8471qr1_convert_raw_accel_to_mag(uint16_t raw, enum fxls8471qr1_fs_range range)
{
int16_t raw_signed = raw;
if(raw_signed >= 1 << 13) {
raw_signed -= 1 << 14;
}
uint16_t divisor;
if(range == FXLS8471QR1_FS_RANGE_2G) {
divisor = FS_DIV_2G;
}
else if(range == FXLS8471QR1_FS_RANGE_4G) {
divisor = FS_DIV_4G;
}
else {
divisor = FS_DIV_8G;
}
return ((int32_t)raw_signed * RAW_SCALE_FACTOR) / divisor;
}
Please check my arithmetic. (Do I have 13 and 14 correct?)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With