I have a Python dictionary like the following:
{u'2012-06-08': 388,
u'2012-06-09': 388,
u'2012-06-10': 388,
u'2012-06-11': 389,
u'2012-06-12': 389,
u'2012-06-13': 389,
u'2012-06-14': 389,
u'2012-06-15': 389,
u'2012-06-16': 389,
u'2012-06-17': 389,
u'2012-06-18': 390,
u'2012-06-19': 390,
u'2012-06-20': 390,
u'2012-06-21': 390,
u'2012-06-22': 390,
u'2012-06-23': 390,
u'2012-06-24': 390,
u'2012-06-25': 391,
u'2012-06-26': 391,
u'2012-06-27': 391,
u'2012-06-28': 391,
u'2012-06-29': 391,
u'2012-06-30': 391,
u'2012-07-01': 391,
u'2012-07-02': 392,
u'2012-07-03': 392,
u'2012-07-04': 392,
u'2012-07-05': 392,
u'2012-07-06': 392}
The keys are Unicode dates and the values are integers. I would like to convert this into a pandas dataframe by having the dates and their corresponding values as two separate columns. Example: col1: Dates col2: DateValue (the dates are still Unicode and datevalues are still integers)
Date DateValue
0 2012-07-01 391
1 2012-07-02 392
2 2012-07-03 392
. 2012-07-04 392
. ... ...
. ... ...
Any help in this direction would be much appreciated. I am unable to find resources on the pandas docs to help me with this.
I know one solution might be to convert each key-value pair in this dict, into a dict so the entire structure becomes a dict of dicts, and then we can add each row individually to the dataframe. But I want to know if there is an easier way and a more direct way to do this.
So far I have tried converting the dict into a series object but this doesn't seem to maintain the relationship between the columns:
s = Series(my_dict,index=my_dict.keys())
We can convert a dictionary to a pandas dataframe by using the pd. DataFrame. from_dict() class-method.
Method 1: Create DataFrame from Dictionary using default Constructor of pandas. Dataframe class. Method 2: Create DataFrame from Dictionary with user-defined indexes. Method 3: Create DataFrame from simple dictionary i.e dictionary with key and simple value like integer or string value.
Since python dictionary is unordered, the output can be in any order. To convert a list to dictionary, we can use list comprehension and make a key:value pair of consecutive elements. Finally, typecase the list to dict type.
The error here, is since calling the DataFrame constructor with scalar values (where it expects values to be a list/dict/... i.e. have multiple columns):
pd.DataFrame(d)
ValueError: If using all scalar values, you must must pass an index
You could take the items from the dictionary (i.e. the key-value pairs):
In [11]: pd.DataFrame(d.items()) # or list(d.items()) in python 3
Out[11]:
0 1
0 2012-07-02 392
1 2012-07-06 392
2 2012-06-29 391
3 2012-06-28 391
...
In [12]: pd.DataFrame(d.items(), columns=['Date', 'DateValue'])
Out[12]:
Date DateValue
0 2012-07-02 392
1 2012-07-06 392
2 2012-06-29 391
But I think it makes more sense to pass the Series constructor:
In [21]: s = pd.Series(d, name='DateValue')
Out[21]:
2012-06-08 388
2012-06-09 388
2012-06-10 388
In [22]: s.index.name = 'Date'
In [23]: s.reset_index()
Out[23]:
Date DateValue
0 2012-06-08 388
1 2012-06-09 388
2 2012-06-10 388
When converting a dictionary into a pandas dataframe where you want the keys to be the columns of said dataframe and the values to be the row values, you can do simply put brackets around the dictionary like this:
>>> dict_ = {'key 1': 'value 1', 'key 2': 'value 2', 'key 3': 'value 3'}
>>> pd.DataFrame([dict_])
key 1 key 2 key 3
0 value 1 value 2 value 3
It's saved me some headaches so I hope it helps someone out there!
EDIT: In the pandas docs one option for the data
parameter in the DataFrame constructor is a list of dictionaries. Here we're passing a list with one dictionary in it.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With