I came across this natural number evaluation of logical numbers in a tutorial and it's been giving me some headache:
natural_number(0).
natural_number(s(N)) :- natural_number(N).
The rule roughly states that: if N
is 0
it's natural, if not we try to send the contents of s/1
back recursively to the rule until the content is 0
, then it's a natural number if not then it's not.
So I tested the above logic implementation, thought to myself, well this works if I want to represent s(0)
as 1
and s(s(0))
as 2
, but I´d like to be able to convert s(0)
to 1
instead.
I´ve thought of the base rule:
sToInt(0,0). %sToInt(X,Y) Where X=s(N) and Y=integer of X
So here is my question: How can I convert s(0) to 1 and s(s(0)) to 2?
Has been answered
Edit: I modified the base rule in the implementation which the answer I accepted pointed me towards:
decode(0,0). %was orignally decode(z,0).
decode(s(N),D):- decode(N,E), D is E +1.
encode(0,0). %was orignally encode(0,z).
encode(D,s(N)):- D > 0, E is D-1, encode(E,N).
So I can now use it like I wanted to, thanks everyone!
Here is another solution that works "both ways" using library(clpfd)
of SWI, YAP, or SICStus
:- use_module(library(clpfd)).
natsx_int(0, 0).
natsx_int(s(N), I1) :-
I1 #> 0,
I2 #= I1 - 1,
natsx_int(N, I2).
No problemo with meta-predicate nest_right/4
in tandem with
Prolog lambdas!
:- use_module(library(lambda)).
:- use_module(library(clpfd)).
:- meta_predicate nest_right(2,?,?,?).
nest_right(P_2,N,X0,X) :-
zcompare(Op,N,0),
ord_nest_right_(Op,P_2,N,X0,X).
:- meta_predicate ord_nest_right_(?,2,?,?,?).
ord_nest_right_(=,_,_,X,X).
ord_nest_right_(>,P_2,N,X0,X2) :-
N0 #= N-1,
call(P_2,X1,X2),
nest_right(P_2,N0,X0,X1).
Sample queries:
?- nest_right(\X^s(X)^true,3,0,N).
N = s(s(s(0))). % succeeds deterministically
?- nest_right(\X^s(X)^true,N,0,s(s(0))).
N = 2 ; % succeeds, but leaves behind choicepoint
false. % terminates universally
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With