Hi I am trying to convert my df to binary and store it in a variable.
my_df:
df = pd.DataFrame({'A':[1,2,3],'B':[4,5,6]})
my code:
import io
towrite = io.BytesIO()
df.to_excel(towrite) # write to BytesIO buffer
towrite.seek(0) # reset pointer
I am getting AttributeError: '_io.BytesIO' object has no attribute 'write_cells'
Full Traceback:
AttributeError Traceback (most recent call last)
<ipython-input-25-be6ee9d9ede6> in <module>()
1 towrite = io.BytesIO()
----> 2 df.to_excel(towrite) # write to BytesIO buffer
3 towrite.seek(0) # reset pointer
4 encoded = base64.b64encode(towrite.read()) #
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py in to_excel(self, excel_writer, sheet_name, na_rep, float_format, columns, header, index, index_label, startrow, startcol, engine, merge_cells, encoding, inf_rep, verbose, freeze_panes)
1422 formatter.write(excel_writer, sheet_name=sheet_name, startrow=startrow,
1423 startcol=startcol, freeze_panes=freeze_panes,
-> 1424 engine=engine)
1425
1426 def to_stata(self, fname, convert_dates=None, write_index=True,
C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\formats\excel.py in write(self, writer, sheet_name, startrow, startcol, freeze_panes, engine)
624
625 formatted_cells = self.get_formatted_cells()
--> 626 writer.write_cells(formatted_cells, sheet_name,
627 startrow=startrow, startcol=startcol,
628 freeze_panes=freeze_panes)
AttributeError: '_io.BytesIO' object has no attribute 'write_cells'
I solved the issue by upgrading pandas to newer version.
import io
towrite = io.BytesIO()
df.to_excel(towrite) # write to BytesIO buffer
towrite.seek(0)
print(towrite)
b''
print(type(towrite))
_io.BytesIO
if you want to see the bytes-like object use getvalue
,
print(towrite.getvalue())
b'PK\x03\x04\x14\x00\x00\x00\x08\x00\x00\x00!\x00<\xb
Pickle is a reproducible format for a Pandas dataframe, but it's only for internal use among trusted users. It's not for sharing with untrusted users due to security reasons.
import pickle
# Export:
my_bytes = pickle.dumps(df, protocol=4)
# Import:
df_restored = pickle.loads(my_bytes)
This was tested with Pandas 1.1.2. Unfortunately this failed for a very large dataframe, but then what worked is pickling and parallel-compressing each column individually, followed by pickling this list. Alternatively you can pickle chunks of the large dataframe.
If you must use a CSV representation:
df.to_csv(index=False).encode()
Note that various datatypes are lost when using CSV.
See this answer. Note that various datatypes are converted when using parquet.
Avoid its use for the most part because it limits the max number of rows and columns.
I solved the issue by upgrading pandas to newer version.
import io
towrite = io.BytesIO()
df.to_excel(towrite) # write to BytesIO buffer
towrite.seek(0)
print(towrite)
b''
print(type(towrite))
_io.BytesIO
if you want to see the bytes-like object use getvalue
,
print(towrite.getvalue())
b'PK\x03\x04\x14\x00\x00\x00\x08\x00\x00\x00!\x00<\xb
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With