I have a pandas column with lists of values of varying length like so:
idx lists
0 [1,3,4,5]
1 [2]
2 [3,5]
3 [2,3,5]
I'd like to convert them into a matrix format where each possible value represents a column and each row populates a 1 if the value exists and 0 otherwise, like so:
idx 1 2 3 4 5
0 1 0 1 1 1
1 0 1 0 0 0
2 0 0 1 0 1
3 0 1 1 0 1
I thought the term for this was one hot encoding, but I tried to use the pd.get_dummies method which states it can do one-hot encoding, but when I try to feed input as shown above:
test_hot = pd.Series([[1,2,3],[3,4,5],[1,6]])
pd.get_dummies(test_hot)
I get the following error:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/anaconda3/lib/python3.7/site-packages/pandas/core/reshape/reshape.py", line 899, in get_dummies
dtype=dtype)
File "/opt/anaconda3/lib/python3.7/site-packages/pandas/core/reshape/reshape.py", line 906, in _get_dummies_1d
codes, levels = _factorize_from_iterable(Series(data))
File "/opt/anaconda3/lib/python3.7/site-packages/pandas/core/arrays/categorical.py", line 2515, in _factorize_from_iterable
cat = Categorical(values, ordered=True)
File "/opt/anaconda3/lib/python3.7/site-packages/pandas/core/arrays/categorical.py", line 347, in __init__
codes, categories = factorize(values, sort=False)
File "/opt/anaconda3/lib/python3.7/site-packages/pandas/util/_decorators.py", line 178, in wrapper
return func(*args, **kwargs)
File "/opt/anaconda3/lib/python3.7/site-packages/pandas/core/algorithms.py", line 630, in factorize
na_value=na_value)
File "/opt/anaconda3/lib/python3.7/site-packages/pandas/core/algorithms.py", line 476, in _factorize_array
na_value=na_value)
File "pandas/_libs/hashtable_class_helper.pxi", line 1601, in pandas._libs.hashtable.PyObjectHashTable.get_labels
TypeError: unhashable type: 'list'
The method works fine if I'm feeding a single list of values such as:
[1,2,3,4,5]
It will show a 5x5 matrix but only populates a single row with a 1. I'm trying to expand this so that more than 1 value can be populated per row by feeding a column of lists.
pandas as has inbuilt function "get_dummies" to get one hot encoding of that particular column/s.
If performance is important use MultiLabelBinarizer
:
test_hot = pd.Series([[1,2,3],[3,4,5],[1,6]])
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
df = pd.DataFrame(mlb.fit_transform(test_hot),columns=mlb.classes_)
print (df)
1 2 3 4 5 6
0 1 1 1 0 0 0
1 0 0 1 1 1 0
2 1 0 0 0 0 1
Your solution should be changed with create DataFrame
, reshape and DataFrame.stack
, last using get_dummies
with DataFrame.max
for aggregate:
df = pd.get_dummies(pd.DataFrame(test_hot.values.tolist()).stack().astype(int))
.max(level=0, axis=0)
print (df)
1 2 3 4 5 6
0 1 1 1 0 0 0
1 0 0 1 1 1 0
2 1 0 0 0 0 1
Details:
Created MultiIndex Series
:
print(pd.DataFrame(test_hot.values.tolist()).stack().astype(int))
0 0 1
1 2
2 3
1 0 3
1 4
2 5
2 0 1
1 6
dtype: int32
Call pd.get_dummies
:
print (pd.get_dummies(pd.DataFrame(test_hot.values.tolist()).stack().astype(int)))
1 2 3 4 5 6
0 0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 0 1 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0
2 0 0 0 0 1 0
2 0 1 0 0 0 0 0
1 0 0 0 0 0 1
And last aggregate max
per first level.
Fixing your get_dummies
code, you can use:
df['lists'].map(lambda x: ','.join(map(str, x))).str.get_dummies(sep=',')
1 2 3 4 5
0 1 0 1 1 1
1 0 1 0 0 0
2 0 0 1 0 1
3 0 1 1 0 1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With