I am trying to make a decimal number ternary in a python function. My idea was to keep dividing until the quotient and remainder were equal, but I can't seem to get that to work. Here's my code:
l = 1
#problem code
def ternary(n):
e = n/3
q = n%3
e= n/3
q= e%3
print q
r = input("What number should I convert?: ")
k = bin(r)
v = hex(r)
i = oct(r)
print k+"(Binary)"
print v+"(Hex)"
print i+"(Octals)"
ternary(r)
l+=1
# Variables:
#l,r,k,v,i
#n,q,e
You can also use the implementation of NumPy: https://numpy.org/doc/stable/reference/generated/numpy.base_repr.html?highlight=base_repr#numpy.base_repr
Though, I agree that a function for ternary exclusively is faster.
import numpy as np
number=100 # decimal
ternary=np.base_repr(number,base=3)
print(ternary)
#10201
My idea was to keep dividing until the quotient and remainder were equal, but I can't seem to get that to work.
Yeah, something like that. Essentially, you want to keep dividing by 3, and collect the remainders. The remainders then make up the final number. In Python, you can use divmod
to divide and collect the remainder.
def ternary (n):
if n == 0:
return '0'
nums = []
while n:
n, r = divmod(n, 3)
nums.append(str(r))
return ''.join(reversed(nums))
Examples:
>>> ternary(0)
'0'
>>> ternary(1)
'1'
>>> ternary(2)
'2'
>>> ternary(3)
'10'
>>> ternary(12)
'110'
>>> ternary(22)
'211'
This can also be done with recursion.
def ternary(n):
e = n//3
q = n%3
if n == 0:
return '0'
elif e == 0:
return str(q)
else:
return ternary(e) + str(q)
More generally, you can convert to any base b
(where 2<=b<=10
) with the following recursive function.
def baseb(n, b):
e = n//b
q = n%b
if n == 0:
return '0'
elif e == 0:
return str(q)
else:
return baseb(e, b) + str(q)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With