I am using Pandas to read a Sas dataset using read_sas
There is a datetime variable in the SAS dataset, which appears in Pandas as:
1.775376e+09
Once I convert it to str
the date is:
1775376002.0
The corresponding date in SAS (not in my Pandas dataset) appears to be a DATETIME21.2
04APR2016:08:00:02.00
I tried to convert it using
pd.to_datetime(df.mysasdate,format='%d%m%Y%H%M%S')
with no success
TypeError: 'float' object is unsliceable
Any ideas? Thanks!
SAS date value
is a value that represents the number of days between January 1, 1960, and a specified date. link
So you can convert number to_timedelta
and add date
1960-01-01 00:00:00
df = pd.DataFrame({'mysasdate':[1775376002.0, 1775377002.0]})
print (df)
mysasdate
0 1.775376e+09
1 1.775377e+09
print (pd.to_timedelta(df['mysasdate'], unit='s') + pd.datetime(1960, 1, 1))
0 2016-04-04 08:00:02
1 2016-04-04 08:16:42
Name: mysasdate, dtype: datetime64[ns]
You will get the right date in Python by using format='sas7bdat' option in your read_sas() method. For example, I used: pd.read_sas(dataset, format='sas7bdat'), and the dates got translated correctly to python dataframe.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With