Having the following dataframe,
df = pd.DataFrame({'device_id' : ['0','0','1','1','2','2'],
'p_food' : [0.2,0.1,0.3,0.5,0.1,0.7],
'p_phone' : [0.8,0.9,0.7,0.5,0.9,0.3]
})
print(df)
output:
device_id p_food p_phone
0 0 0.2 0.8
1 0 0.1 0.9
2 1 0.3 0.7
3 1 0.5 0.5
4 2 0.1 0.9
5 2 0.7 0.3
How to achieve this transformation?
df2 = pd.DataFrame({'device_id' : ['0','1','2'],
'p_food_1' : [0.2,0.3,0.1],
'p_food_2' : [0.1,0.5,0.7],
'p_phone_1' : [0.8,0.7,0.9],
'p_phone_2' : [0.9,0.5,0.3]
})
print(df2)
Output:
device_id p_food_1 p_food_2 p_phone_1 p_phone_2
0 0 0.2 0.1 0.8 0.9
1 1 0.3 0.5 0.7 0.5
2 2 0.1 0.7 0.9 0.3
I try to achieve it use groupby,apply,agg...
But I still can't achieve this transformation.
Update
My final Code:
df.drop_duplicates('device_id', keep='first').merge(df.drop_duplicates('device_id', keep='last'),on='device_id')
I appreciated su79eu7k's and A-Za-z's time and effort.
Words are not enough to express my gratitude.
If you are still looking for an answer using groupby
df = df.groupby('device_id')['p_food', 'p_phone'].apply(lambda x: pd.DataFrame(x.values)).unstack().reset_index()
df.columns = df.columns.droplevel()
df.columns = ['device_id','p_food_1', 'p_food_2', 'p_phone_1','p_phone_2']
You get
device_id p_food_1 p_food_2 p_phone_1 p_phone_2
0 0 0.2 0.1 0.8 0.9
1 1 0.3 0.5 0.7 0.5
2 2 0.1 0.7 0.9 0.3
df_m = df.drop_duplicates('device_id', keep='first')\
.merge(df, on='device_id')\
.drop_duplicates('device_id', keep='last')\
[['device_id', 'p_food_x', 'p_food_y', 'p_phone_x', 'p_phone_y']]\
.reset_index(drop=True)
print(df_m)
device_id p_food_x p_food_y p_phone_x p_phone_y
0 0 0.2 0.1 0.8 0.9
1 1 0.3 0.5 0.7 0.5
2 2 0.1 0.7 0.9 0.3
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With