I've used two examples (from this site too), but results are not the same as those that said Unity.
Quaternion.Euler and .eulerAngles are Unity functions. FromQ doesn't perform singularity check, FromQ2 does.
Results:
eulers = (100,55,-11):
Quaternion.Euler(eulers) == (0.6, 0.4, -0.4, 0.5)
ToQ(eulers)); == (0.5, -0.4, 0.2, 0.7) // 0.5, -0.4 right but in wrong order
FromQ(ToQ(eulers)) == (55.0, 100.0, -11.0)
FromQ2(ToQ(eulers)) == (-55.5, -6.3, 71.0) // something right
Quaternion.Euler(eulers).eulerAngles == (80.0, 235.0, 169.0)
FromQ2(Quaternion.Euler(eulers)) == (65.8, 1.9, 99.8)
ToQ(eulers).eulerAngles == (70.0, 286.9, 341.4)
FromQ(Quaternion.Euler(eulers)) == (-65.8, 76.0, 4.6)
It must be:
FromQ() = FromQ2() = .eulerAngles,
ToQ() = Quaternion.Euler()
The code is here: http://pastebin.ru/eAlTHdYf
Can anyone correct this code? I need code that will return the values that are identical to the values that Unity functions returns.
Here is fixed code: http://pastebin.com/riRLRvch. Both functions (FromQ and ToQ) work well. But I have a problem with a singularity. It can't detect the singularity properly.
For example (90, 0, 50) in quaternion is (0.6, -0.3, 0.3, 0.6).
test = x * y + z * w = 0 (must be close to 0.5 or -0.5)
FromQ can't calculate correct result so we have the singularity here. The same for (90, 50, 0) - (0.6, 0.3, -0.3, 0.6).
I see only one solution - calculate "test" as xw-yz. But I'm not sure this is right.
How to fix it?
I've found solution
public static Quaternion ToQ (Vector3 v)
{
return ToQ (v.y, v.x, v.z);
}
public static Quaternion ToQ (float yaw, float pitch, float roll)
{
yaw *= Mathf.Deg2Rad;
pitch *= Mathf.Deg2Rad;
roll *= Mathf.Deg2Rad;
float rollOver2 = roll * 0.5f;
float sinRollOver2 = (float)Math.Sin ((double)rollOver2);
float cosRollOver2 = (float)Math.Cos ((double)rollOver2);
float pitchOver2 = pitch * 0.5f;
float sinPitchOver2 = (float)Math.Sin ((double)pitchOver2);
float cosPitchOver2 = (float)Math.Cos ((double)pitchOver2);
float yawOver2 = yaw * 0.5f;
float sinYawOver2 = (float)Math.Sin ((double)yawOver2);
float cosYawOver2 = (float)Math.Cos ((double)yawOver2);
Quaternion result;
result.w = cosYawOver2 * cosPitchOver2 * cosRollOver2 + sinYawOver2 * sinPitchOver2 * sinRollOver2;
result.x = cosYawOver2 * sinPitchOver2 * cosRollOver2 + sinYawOver2 * cosPitchOver2 * sinRollOver2;
result.y = sinYawOver2 * cosPitchOver2 * cosRollOver2 - cosYawOver2 * sinPitchOver2 * sinRollOver2;
result.z = cosYawOver2 * cosPitchOver2 * sinRollOver2 - sinYawOver2 * sinPitchOver2 * cosRollOver2;
return result;
}
public static Vector3 FromQ2 (Quaternion q1)
{
float sqw = q1.w * q1.w;
float sqx = q1.x * q1.x;
float sqy = q1.y * q1.y;
float sqz = q1.z * q1.z;
float unit = sqx + sqy + sqz + sqw; // if normalised is one, otherwise is correction factor
float test = q1.x * q1.w - q1.y * q1.z;
Vector3 v;
if (test>0.4995f*unit) { // singularity at north pole
v.y = 2f * Mathf.Atan2 (q1.y, q1.x);
v.x = Mathf.PI / 2;
v.z = 0;
return NormalizeAngles (v * Mathf.Rad2Deg);
}
if (test<-0.4995f*unit) { // singularity at south pole
v.y = -2f * Mathf.Atan2 (q1.y, q1.x);
v.x = -Mathf.PI / 2;
v.z = 0;
return NormalizeAngles (v * Mathf.Rad2Deg);
}
Quaternion q = new Quaternion (q1.w, q1.z, q1.x, q1.y);
v.y = (float)Math.Atan2 (2f * q.x * q.w + 2f * q.y * q.z, 1 - 2f * (q.z * q.z + q.w * q.w)); // Yaw
v.x = (float)Math.Asin (2f * (q.x * q.z - q.w * q.y)); // Pitch
v.z = (float)Math.Atan2 (2f * q.x * q.y + 2f * q.z * q.w, 1 - 2f * (q.y * q.y + q.z * q.z)); // Roll
return NormalizeAngles (v * Mathf.Rad2Deg);
}
static Vector3 NormalizeAngles (Vector3 angles)
{
angles.x = NormalizeAngle (angles.x);
angles.y = NormalizeAngle (angles.y);
angles.z = NormalizeAngle (angles.z);
return angles;
}
static float NormalizeAngle (float angle)
{
while (angle>360)
angle -= 360;
while (angle<0)
angle += 360;
return angle;
}
This question is almost three years old, but I needed the same code and the ones posted here seemed to be incorrect, so I tweaked them and found this:
public static Quaternion Euler(float yaw, float pitch, float roll) {
yaw*=Mathf.Deg2Rad;
pitch*=Mathf.Deg2Rad;
roll*=Mathf.Deg2Rad;
double yawOver2 = yaw * 0.5f;
float cosYawOver2 = (float)System.Math.Cos(yawOver2);
float sinYawOver2 = (float)System.Math.Sin(yawOver2);
double pitchOver2 = pitch * 0.5f;
float cosPitchOver2 = (float)System.Math.Cos(pitchOver2);
float sinPitchOver2 = (float)System.Math.Sin(pitchOver2);
double rollOver2 = roll * 0.5f;
float cosRollOver2 = (float)System.Math.Cos(rollOver2);
float sinRollOver2 = (float)System.Math.Sin(rollOver2);
Quaternion result;
result.w = cosYawOver2 * cosPitchOver2 * cosRollOver2 + sinYawOver2 * sinPitchOver2 * sinRollOver2;
result.x = sinYawOver2 * cosPitchOver2 * cosRollOver2 + cosYawOver2 * sinPitchOver2 * sinRollOver2;
result.y = cosYawOver2 * sinPitchOver2 * cosRollOver2 - sinYawOver2 * cosPitchOver2 * sinRollOver2;
result.z = cosYawOver2 * cosPitchOver2 * sinRollOver2 - sinYawOver2 * sinPitchOver2 * cosRollOver2;
return result;
}
According to a few quick tests, this matches Quaternion.Euler 100%
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With