I have a figure with 5 subplots. I am using a mouse click event to create a shaded area in the 4th and 5th subplot only (see attached pic below).
The mouse click event is triggered when I click on any of the subplots in the figure. However, I would ideally like to be able to trigger the mouse click event only when clicked on the 4th and 5th subplots. I am wondering if this is possible using mpl_connect.
Here's my code
import numpy as np
from scipy.stats import norm, lognorm, uniform
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button, RadioButtons, CheckButtons
from matplotlib.patches import Polygon
#####Mean and standard deviation#####
mu_a1 = 1
mu_b1 = 10
mu_c1 = -13
sigma_a1 = 0.14
sigma_b1 = 1.16
sigma_c1 = 2.87
mu_x01 = -11
sigma_x01 = 1.9
#####_____#####
#####Generating random data#####
a1 = 0.75*mu_a1 + (1.25 - 0.75)*sigma_a1*np.random.sample(10000)
b1 = 8*mu_b1 + (12 - 8)*sigma_b1*np.random.sample(10000)
c1 = -12*mu_c1 + 2*sigma_c1*np.random.sample(10000)
x01 = (-b1 - np.sqrt(b1**2 - (4*a1*c1)))/(2*a1)
#####_____#####
#####Creating Subplots#####
fig = plt.figure()
plt.subplots_adjust(left=0.13,right=0.99,bottom=0.05)
ax1 = fig.add_subplot(331) #Subplot 1
ax1.set_xlabel('a' , fontsize = 14)
ax1.grid(True)
ax2 = fig.add_subplot(334) #Subplot 2
ax2.set_xlabel('b', fontsize = 14)
ax2.grid(True)
ax3 = fig.add_subplot(337) #Subplot 3
ax3.set_xlabel('c', fontsize = 14)
ax3.grid(True)
ax4 = fig.add_subplot(132) #Subplot 4
ax4.set_xlabel('x0', fontsize = 14)
ax4.set_ylabel('PDF', fontsize = 14)
ax4.grid(True)
ax5 = fig.add_subplot(133) #Subplot 5
ax5.set_xlabel('x0', fontsize = 14)
ax5.set_ylabel('CDF', fontsize = 14)
ax5.grid(True)
#####_____#####
#####Plotting Distributions#####
[n1,bins1,patches] = ax1.hist(a1, bins=50, color = 'red',alpha = 0.5, normed = True)
[n2,bins2,patches] = ax2.hist(b1, bins=50, color = 'red',alpha = 0.5, normed = True)
[n3,bins3,patches] = ax3.hist(c1, bins=50, color = 'red',alpha = 0.5, normed = True)
[n4,bins4,patches] = ax4.hist(x01, bins=50, color = 'red',alpha = 0.5, normed = True)
ax4.axvline(np.mean(x01), color = 'black', linestyle = 'dashed', lw = 2)
dx = bins4[1] - bins4[0]
CDF = np.cumsum(n4)*dx
ax5.plot(bins4[1:], CDF, color = 'red')
#####_____#####
#####Event handler for button_press_event#####
def enter_axes(event):
print('enter_axes', event.inaxes)
event.canvas.draw()
def leave_axes(event):
print('leave_axes', event.inaxes)
event.canvas.draw()
def onclick(event):
'''
Event handler for button_press_event
@param event MouseEvent
'''
global ix
ix = event.xdata
if ix is not None:
print 'x = %f' %(ix)
ax4.clear()
ax5.clear()
ax4.grid(True)
ax5.grid(True)
[n4,bins4,patches] = ax4.hist(x01, bins=50, color = 'red',alpha = 0.5, normed = True)
ax4.axvline(np.mean(x01), color = 'black', linestyle = 'dashed', lw = 2)
xmin = ix
xmax = ax4.get_xlim()[1]
ax4.axvspan(xmin, xmax, facecolor='0.9', alpha=0.5)
dx = bins4[1] - bins4[0]
CDF = np.cumsum(n4)*dx
ax5.plot(bins4[1:], CDF, color = 'red')
ax5.axvspan(xmin, xmax, facecolor='0.9', alpha=0.5)
plt.draw()
return ix
cid = fig.canvas.mpl_connect('button_press_event', onclick)
#fig.canvas.mpl_disconnect(cid)
plt.show()
#####_____#####
Thanks in advance :-)
Subplots mean groups of axes that can exist in a single matplotlib figure. subplots() function in the matplotlib library, helps in creating multiple layouts of subplots. It provides control over all the individual plots that are created.
subplots_adjust() Function. The subplots_adjust() function in pyplot module of matplotlib library is used to tune the subplot layout. Parameters: This method accept the following parameters that are described below: left : This parameter is the left side of the subplots of the figure.
You can use the inaxes
property of event
to find which axes you are in. See the docs here. If you iterate through your subplot Axes
, you can then compare the result of inaxes
to each Axes
instance, and then only go ahead with drawing the shaded region if you are in ax4
or ax5
.
I've modified your onclick
function to do that. For information, it also prints which axes the click was in, but you can turn that off once you satisfy yourself that it is working as planned.
def onclick(event):
'''
Event handler for button_press_event
@param event MouseEvent
'''
global ix
ix = event.xdata
for i, ax in enumerate([ax1, ax2, ax3, ax4, ax5]):
# For infomation, print which axes the click was in
if ax == event.inaxes:
print "Click is in axes ax{}".format(i+1)
# Check if the click was in ax4 or ax5
if event.inaxes in [ax4, ax5]:
if ix is not None:
print 'x = %f' %(ix)
ax4.clear()
ax5.clear()
ax4.grid(True)
ax5.grid(True)
[n4,bins4,patches] = ax4.hist(x01, bins=50, color = 'red',alpha = 0.5, normed = True)
ax4.axvline(np.mean(x01), color = 'black', linestyle = 'dashed', lw = 2)
xmin = ix
xmax = ax4.get_xlim()[1]
ax4.axvspan(xmin, xmax, facecolor='0.9', alpha=0.5)
dx = bins4[1] - bins4[0]
CDF = np.cumsum(n4)*dx
ax5.plot(bins4[1:], CDF, color = 'red')
ax5.axvspan(xmin, xmax, facecolor='0.9', alpha=0.5)
plt.draw()
return ix
else:
return
Note: I took inspiration for this answer from this other SO answer.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With