In R predict.lm computes predictions based on the results from linear regression and also offers to compute confidence intervals for these predictions. According to the manual, these intervals are based on the error variance of fitting, but not on the error intervals of the coefficient.
On the other hand predict.glm which computes predictions based on logistic and Poisson regression (amongst a few others) doesn't have an option for confidence intervals. And I even have a hard time imagining how such confidence intervals could be computed to provide a meaningful insight for Poisson and logistic regression.
Are there cases in which it is meaningful to provide confidence intervals for such predictions? How can they be interpreted? And what are the assumptions in these cases?
This procedure calculates sample size for the case when there is only one, binary covariate (X) in the logistic regression model and a Wald statistic is used to calculate a confidence interval for the odds ratio of Y to X. Often, Y is called the response variable and X is referred to as the exposure variable.
The odds ratio estimate is 1.227; the 95% confidence interval is (0.761, 1.979).
A 95% confidence level means that out of 100 random samples taken, I expect 95 of the confidence intervals to contain the true population parameter.
The usual way is to compute a confidence interval on the scale of the linear predictor, where things will be more normal (Gaussian) and then apply the inverse of the link function to map the confidence interval from the linear predictor scale to the response scale.
To do this you need two things;
predict()
with type = "link"
, andpredict()
with se.fit = TRUE
.The first produces predictions on the scale of the linear predictor, the second returns the standard errors of the predictions. In pseudo code
## foo <- mtcars[,c("mpg","vs")]; names(foo) <- c("x","y") ## Working example data mod <- glm(y ~ x, data = foo, family = binomial) preddata <- with(foo, data.frame(x = seq(min(x), max(x), length = 100))) preds <- predict(mod, newdata = preddata, type = "link", se.fit = TRUE)
preds
is then a list with components fit
and se.fit
.
The confidence interval on the linear predictor is then
critval <- 1.96 ## approx 95% CI upr <- preds$fit + (critval * preds$se.fit) lwr <- preds$fit - (critval * preds$se.fit) fit <- preds$fit
critval
is chosen from a t or z (normal) distribution as required (I forget exactly now which to use for which type of GLM and what the properties are) with the coverage required. The 1.96
is the value of the Gaussian distribution giving 95% coverage:
> qnorm(0.975) ## 0.975 as this is upper tail, 2.5% also in lower tail [1] 1.959964
Now for fit
, upr
and lwr
we need to apply the inverse of the link function to them.
fit2 <- mod$family$linkinv(fit) upr2 <- mod$family$linkinv(upr) lwr2 <- mod$family$linkinv(lwr)
Now you can plot all three and the data.
preddata$lwr <- lwr2 preddata$upr <- upr2 ggplot(data=foo, mapping=aes(x=x,y=y)) + geom_point() + stat_smooth(method="glm", method.args=list(family=binomial)) + geom_line(data=preddata, mapping=aes(x=x, y=upr), col="red") + geom_line(data=preddata, mapping=aes(x=x, y=lwr), col="red")
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With