I have a Numpy ndarray matrix of float values and I need to select spesific rows where certain columns have values satisfying certain criteria. For example lets say I have the following numpy matrix:
matrix = np.ndarray([4, 5])
matrix[0,:] = range(1,6)
matrix[1,:] = range(6,11)
matrix[2,:] = range(11,16)
matrix[3,:] = range(16,21)
Lets say I want to select rows from the matrix where the first column's value is between 1 and 6 and the value of second column is between 2-7.
How can I get the row-indexes of the matrix where these conditions are satisfied? What about if I want to delete the rows that satisfy the conditional criterion?
For a numpy based solution, you can use numpy.where
and then get the row indexes from it and then use it for indexing you matrix. Example -
matrix[np.where((1 <= matrix[:,0]) & (matrix[:,0] <= 6)
& (2 <= matrix[:,1]) & (matrix[:,1] <= 7))]
Demo -
In [169]: matrix
Out[169]:
array([[ 1., 2., 3., 4., 5.],
[ 6., 7., 8., 9., 10.],
[ 11., 12., 13., 14., 15.],
[ 16., 17., 18., 19., 20.]])
In [170]: matrix[np.where((1 <= matrix[:,0]) & (matrix[:,0] <= 6)
.....: & (2 <= matrix[:,1]) & (matrix[:,1] <= 7))]
Out[170]:
array([[ 1., 2., 3., 4., 5.],
[ 6., 7., 8., 9., 10.]])
Another method , as indicated in the comments would be to use boolean masks, Example -
mask = ((1 <= matrix[:,0]) & (matrix[:,0] <= 6)
& (2 <= matrix[:,1]) & (matrix[:,1] <= 7))
matrix[mask,:]
Demo -
In [41]: matrix
Out[41]:
array([[ 1., 2., 3., 4., 5.],
[ 6., 7., 8., 9., 10.],
[ 11., 12., 13., 14., 15.],
[ 16., 17., 18., 19., 20.]])
In [42]: mask = ((1 <= matrix[:,0]) & (matrix[:,0] <= 6)
....: & (2 <= matrix[:,1]) & (matrix[:,1] <= 7))
In [43]:
In [43]: matrix[mask,:]
Out[43]:
array([[ 1., 2., 3., 4., 5.],
[ 6., 7., 8., 9., 10.]])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With