I would like to include a sequence of concentric circles as a grid in a plot of points. The goal is to give the viewer an idea of which points in the plot have approximately the same magnitude. I created a hack to do this:
add_circle_grid <- function(g,ncirc = 10){
gb <- ggplot_build(g)
xl <- gb$panel$ranges[[1]]$x.range
yl <- gb$panel$ranges[[1]]$y.range
rmax = sqrt(max(xl)^2+max(yl)^2)
theta=seq(from=0,by=.01,to=2*pi)
for(n in 1:ncirc){
r <- n*rmax/ncirc
circle <- data.frame(x=r*sin(theta),y=r*cos(theta))
g<- g+geom_path(data=circle,aes(x=x,y=y),alpha=.2)
}
return(g+xlim(xl)+ylim(yl))
}
xy<-data.frame(x=rnorm(100),y=rnorm(100))
ggplot(xy,aes(x,y))+geom_point()
ggg<-add_circle_grid(ggplot(xy,aes(x,y))+geom_point())
print(ggg)
But I was wondering if there is a more ggplot way to do this. I also considered using polar coordinates but it does not allow me to set x- and y-limits in the same way. Finally, I wouldn't mind little text labels indicating the radius of each circle.
EDIT Perhaps this is asking too much but there are two other things that I would like.
Each concentric circle will have a different radius but the same center point which is also called a midpoint.
The early Stoic philosopher Hierocles depicted the idea of oikeiosis through his concentric circles of identity: the innermost circle represented the individual; the surrounding circles stood for immediate family, extended family, local group, citizens, countrymen and humanity, in this order.
A concentric pattern has two or more similar shapes that share a common center. In geometry, concentric circles are two or more circles with the same center but different radii. The space between two concentric circles is known as an annulus. Annulus.
Concentric circles is a speaking and listening activity that provides every learner in the class an equal opportunity to speak. Learners stand in an inner and an outer circle facing each other. They ask and answer questions or discuss a topic.
set.seed(1)
xy <- data.frame(x=rnorm(100),y=rnorm(100))
rmax = sqrt(max(xy$x)^2+max(xy$y)^2)
theta=seq(from=0,by=.01,to=2*pi)
ncirc=10
dat.circ = do.call(rbind,
lapply(seq_len(ncirc),function(n){
r <- n*rmax/ncirc
data.frame(x=r*sin(theta),y=r*cos(theta),r=round(r,2))
}))
rr <- unique(dat.circ$r)
dat.text=data.frame(x=rr*cos(30),y=rr*sin(30),label=rr)
library(ggplot2)
ggplot(xy,aes(x,y))+
geom_point() +
geom_path(data=dat.circ,alpha=.2,aes(group=factor(r))) +
geom_text(data=dat.text,aes(label=rr),vjust=-1)
How about this with ggplot2
and grid
:
require(ggplot2)
require(grid)
x<-(runif(100)-0.5)*4
y<-(runif(100)-0.5)*4
circ_rads<-seq(0.25,2,0.25)
qplot(x,y)+
lapply(circ_rads,FUN=function(x)annotation_custom(circleGrob(gp=gpar(fill="transparent",color="black")),-x,x,-x,x))+
geom_text(aes(x=0,y=circ_rads+0.1,label=circ_rads)) + coord_fixed(ratio = 1)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With