I have two largish (snippets provided) pandas DateFrame
s with unequal dates as indexes that I wish to concat into one:
NAB.AX CBA.AX
Close Volume Close Volume
Date Date
2009-06-05 36.51 4962900 2009-06-08 21.95 0
2009-06-04 36.79 5528800 2009-06-05 21.95 8917000
2009-06-03 36.80 5116500 2009-06-04 22.21 18723600
2009-06-02 36.33 5303700 2009-06-03 23.11 11643800
2009-06-01 36.16 5625500 2009-06-02 22.80 14249900
2009-05-29 35.14 13038600 --AND-- 2009-06-01 22.52 11687200
2009-05-28 33.95 7917600 2009-05-29 22.02 22350700
2009-05-27 35.13 4701100 2009-05-28 21.63 9679800
2009-05-26 35.45 4572700 2009-05-27 21.74 9338200
2009-05-25 34.80 3652500 2009-05-26 21.64 8502900
Problem is, if I run this:
keys = ['CBA.AX','NAB.AX']
mv = pandas.concat([data['CBA.AX'][650:660],data['NAB.AX'][650:660]], axis=1, keys=stocks,)
the following DateFrame is produced:
CBA.AX NAB.AX
Close Volume Close Volume
Date
2200-08-16 04:24:21.460041 NaN NaN NaN NaN
2203-05-13 04:24:21.460041 NaN NaN NaN NaN
2206-02-06 04:24:21.460041 NaN NaN NaN NaN
2208-11-02 04:24:21.460041 NaN NaN NaN NaN
2211-07-30 04:24:21.460041 NaN NaN NaN NaN
2219-10-16 04:24:21.460041 NaN NaN NaN NaN
2222-07-12 04:24:21.460041 NaN NaN NaN NaN
2225-04-07 04:24:21.460041 NaN NaN NaN NaN
2228-01-02 04:24:21.460041 NaN NaN NaN NaN
2230-09-28 04:24:21.460041 NaN NaN NaN NaN
2238-12-15 04:24:21.460041 NaN NaN NaN NaN
Does anybody have any idea why this might be the case?
On another point: is there any python libraries around that pull data from yahoo and normalise it?
Cheers.
EDIT: For reference:
data = {
'CBA.AX': <class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2313 entries, 2011-12-29 00:00:00 to 2003-01-01 00:00:00
Data columns:
Close 2313 non-null values
Volume 2313 non-null values
dtypes: float64(1), int64(1),
'NAB.AX': <class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2329 entries, 2011-12-29 00:00:00 to 2003-01-01 00:00:00
Data columns:
Close 2329 non-null values
Volume 2329 non-null values
dtypes: float64(1), int64(1)
}
pd. concat joins on the index and can join two or more DataFrames at once. It does a full outer join by default.
concat() to Merge Two DataFrames by Index. You can concatenate two DataFrames by using pandas. concat() method by setting axis=1 , and by default, pd. concat is a row-wise outer join.
Use pandas. concat() to concatenate/merge two or multiple pandas DataFrames across rows or columns. When you concat() two pandas DataFrames on rows, it creates a new Dataframe containing all rows of two DataFrames basically it does append one DataFrame with another.
It is possible to read the data with pandas and to concatenate it.
First import the data
In [449]: import pandas.io.data as web
In [450]: nab = web.get_data_yahoo('NAB.AX', start='2009-05-25',
end='2009-06-05')[['Close', 'Volume']]
In [451]: cba = web.get_data_yahoo('CBA.AX', start='2009-05-26',
end='2009-06-08')[['Close', 'Volume']]
In [453]: nab
Out[453]:
Close Volume
Date
2009-05-25 21.15 9685100
2009-05-26 21.64 8541900
2009-05-27 21.74 9042900
2009-05-28 21.63 9701000
2009-05-29 22.02 14665700
2009-06-01 22.52 6782000
2009-06-02 22.80 10473400
2009-06-03 23.11 9931400
2009-06-04 22.21 17869000
2009-06-05 21.95 8214300
In [454]: cba
Out[454]:
Close Volume
Date
2009-05-26 35.45 4529600
2009-05-27 35.13 4521500
2009-05-28 33.95 7945400
2009-05-29 35.14 12548500
2009-06-01 36.16 4509400
2009-06-02 36.33 4304900
2009-06-03 36.80 4845400
2009-06-04 36.79 4592300
2009-06-05 36.51 4417500
2009-06-08 36.51 0
Than concatenate it:
In [455]: keys = ['CBA.AX','NAB.AX']
In [456]: pd.concat([cba, nab], axis=1, keys=keys)
Out[456]:
CBA.AX NAB.AX
Close Volume Close Volume
Date
2009-05-25 NaN NaN 21.15 9685100
2009-05-26 35.45 4529600 21.64 8541900
2009-05-27 35.13 4521500 21.74 9042900
2009-05-28 33.95 7945400 21.63 9701000
2009-05-29 35.14 12548500 22.02 14665700
2009-06-01 36.16 4509400 22.52 6782000
2009-06-02 36.33 4304900 22.80 10473400
2009-06-03 36.80 4845400 23.11 9931400
2009-06-04 36.79 4592300 22.21 17869000
2009-06-05 36.51 4417500 21.95 8214300
2009-06-08 36.51 0 NaN NaN
Try to join on outer.
When I am working with a number of stocks, I would usually have a frame titled "open high,low,close,etc" with column as a ticker. If you want one data structure, I would use Panels for this.
for Yahoo data, you can use pandas:
import pandas.io.data as data
spy = data.DataReader("SPY","yahoo","1991/1/1")
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With