Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Concat list of pandas data frame, but ignoring column name

Sub-title: Dumb it down pandas, stop trying to be clever.

I've a list (res) of single-column pandas data frames, each containing the same kind of numeric data, but each with a different column name. The row indices have no meaning. I want to put them into a single, very long, single-column data frame.

When I do pd.concat(res) I get one column per input file (and loads and loads of NaN cells). I've tried various values for the parameters (*), but none that do what I'm after.

Edit: Sample data:

res = [
    pd.DataFrame({'A':[1,2,3]}),
    pd.DataFrame({'B':[9,8,7,6,5,4]}),
    pd.DataFrame({'C':[100,200,300,400]}),
]

I have an ugly-hack solution: copy every data frame and giving it a new column name:

newList = []
for r in res:
  r.columns = ["same"]
  newList.append(r)
pd.concat( newList, ignore_index=True )

Surely that is not the best way to do it??

BTW, pandas: concat data frame with different column name is similar, but my question is even simpler, as I don't want the index maintained. (I also start with a list of N single-column data frames, not a single N-column data frame.)

*: E.g. axis=0 is default behaviour. axis=1 gives an error. join="inner" is just silly (I only get the index). ignore_index=True renumbers the index, but I stil gets lots of columns, lots of NaNs.


UPDATE for empty lists

I was having problems (with all the given solutions) when the data had an empty list, something like:

res = [
    pd.DataFrame({'A':[1,2,3]}),
    pd.DataFrame({'B':[9,8,7,6,5,4]}),
    pd.DataFrame({'C':[]}),
    pd.DataFrame({'D':[100,200,300,400]}),
]

The trick was to force the type, by adding .astype('float64'). E.g.

pd.Series(np.concatenate([df.values.ravel().astype('float64') for df in res]))

or:

pd.concat(res,axis=0).astype('float64').stack().reset_index(drop=True)
like image 717
Darren Cook Avatar asked Dec 19 '16 15:12

Darren Cook


2 Answers

I think you need concat with stack:

print (pd.concat(res, axis=1))
     A  B      C
0  1.0  9  100.0
1  2.0  8  200.0
2  3.0  7  300.0
3  NaN  6  400.0
4  NaN  5    NaN
5  NaN  4    NaN

print (pd.concat(res, axis=1).stack().reset_index(drop=True))
0       1.0
1       9.0
2     100.0
3       2.0
4       8.0
5     200.0
6       3.0
7       7.0
8     300.0
9       6.0
10    400.0
11      5.0
12      4.0
dtype: float64

Another solution with numpy.ravel for flattening:

print (pd.Series(pd.concat(res, axis=1).values.ravel()).dropna())
0       1.0
1       9.0
2     100.0
3       2.0
4       8.0
5     200.0
6       3.0
7       7.0
8     300.0
10      6.0
11    400.0
13      5.0
16      4.0
dtype: float64

print (pd.DataFrame(pd.concat(res, axis=1).values.ravel(), columns=['col']).dropna())
      col
0     1.0
1     9.0
2   100.0
3     2.0
4     8.0
5   200.0
6     3.0
7     7.0
8   300.0
10    6.0
11  400.0
13    5.0
16    4.0

Solution with list comprehension:

print (pd.Series(np.concatenate([df.values.ravel() for df in res])))
0       1
1       2
2       3
3       9
4       8
5       7
6       6
7       5
8       4
9     100
10    200
11    300
12    400
dtype: int64 
like image 164
jezrael Avatar answered Oct 01 '22 21:10

jezrael


I would use list comphrension such has:

import pandas as pd
res = [
    pd.DataFrame({'A':[1,2,3]}),
    pd.DataFrame({'B':[9,8,7,6,5,4]}),
    pd.DataFrame({'C':[100,200,300,400]}),
]


x = []
[x.extend(df.values.tolist()) for df in res]
pd.DataFrame(x)

Out[49]: 
      0
0     1
1     2
2     3
3     9
4     8
5     7
6     6
7     5
8     4
9   100
10  200
11  300
12  400

I tested speed for you.

%timeit x = []; [x.extend(df.values.tolist()) for df in res]; pd.DataFrame(x)
10000 loops, best of 3: 196 µs per loop
%timeit pd.Series(pd.concat(res, axis=1).values.ravel()).dropna()
1000 loops, best of 3: 920 µs per loop
%timeit pd.concat(res, axis=1).stack().reset_index(drop=True)
1000 loops, best of 3: 902 µs per loop
%timeit pd.DataFrame(pd.concat(res, axis=1).values.ravel(), columns=['col']).dropna()
1000 loops, best of 3: 1.07 ms per loop
%timeit pd.Series(np.concatenate([df.values.ravel() for df in res]))
10000 loops, best of 3: 70.2 µs per loop

looks like

pd.Series(np.concatenate([df.values.ravel() for df in res]))

is the fastest.

like image 36
Steven G Avatar answered Oct 01 '22 21:10

Steven G