I am trying to concat the following dataframes:
df1
price side timestamp timestamp 2016-01-04 00:01:15.631331072 0.7286 2 1451865675631331 2016-01-04 00:01:15.631399936 0.7286 2 1451865675631400 2016-01-04 00:01:15.631860992 0.7286 2 1451865675631861 2016-01-04 00:01:15.631866112 0.7286 2 1451865675631866
and:
df2
bid bid_size offer offer_size timestamp 2016-01-04 00:00:31.331441920 0.7284 4000000 0.7285 1000000 2016-01-04 00:00:53.631324928 0.7284 4000000 0.7290 4000000 2016-01-04 00:01:03.131234048 0.7284 5000000 0.7286 4000000 2016-01-04 00:01:12.131444992 0.7285 1000000 0.7286 4000000 2016-01-04 00:01:15.631364096 0.7285 4000000 0.7290 4000000
With
data = pd.concat([df1,df2], axis=1)
But I get the follwing output:
InvalidIndexError Traceback (most recent call last) <ipython-input-38-2e88458f01d7> in <module>() ----> 1 data = pd.concat([df1,df2], axis=1) 2 data = data.fillna(method='pad') 3 data = data.fillna(method='bfill') 4 data['timestamp'] = data.index.values#converting to datetime 5 data['timestamp'] = pd.to_datetime(data['timestamp'])#converting to datetime /usr/local/lib/python2.7/site-packages/pandas/tools/merge.pyc in concat(objs, axis, join, join_axes, ignore_index, keys, levels, names, verify_integrity, copy) 810 keys=keys, levels=levels, names=names, 811 verify_integrity=verify_integrity, --> 812 copy=copy) 813 return op.get_result() 814 /usr/local/lib/python2.7/site-packages/pandas/tools/merge.pyc in __init__(self, objs, axis, join, join_axes, keys, levels, names, ignore_index, verify_integrity, copy) 947 self.copy = copy 948 --> 949 self.new_axes = self._get_new_axes() 950 951 def get_result(self): /usr/local/lib/python2.7/site-packages/pandas/tools/merge.pyc in _get_new_axes(self) 1013 if i == self.axis: 1014 continue -> 1015 new_axes[i] = self._get_comb_axis(i) 1016 else: 1017 if len(self.join_axes) != ndim - 1: /usr/local/lib/python2.7/site-packages/pandas/tools/merge.pyc in _get_comb_axis(self, i) 1039 raise TypeError("Cannot concatenate list of %s" % types) 1040 -> 1041 return _get_combined_index(all_indexes, intersect=self.intersect) 1042 1043 def _get_concat_axis(self): /usr/local/lib/python2.7/site-packages/pandas/core/index.pyc in _get_combined_index(indexes, intersect) 6120 index = index.intersection(other) 6121 return index -> 6122 union = _union_indexes(indexes) 6123 return _ensure_index(union) 6124 /usr/local/lib/python2.7/site-packages/pandas/core/index.pyc in _union_indexes(indexes) 6149 6150 if hasattr(result, 'union_many'): -> 6151 return result.union_many(indexes[1:]) 6152 else: 6153 for other in indexes[1:]: /usr/local/lib/python2.7/site-packages/pandas/tseries/index.pyc in union_many(self, others) 959 else: 960 tz = this.tz --> 961 this = Index.union(this, other) 962 if isinstance(this, DatetimeIndex): 963 this.tz = tz /usr/local/lib/python2.7/site-packages/pandas/core/index.pyc in union(self, other) 1553 result.extend([x for x in other._values if x not in value_set]) 1554 else: -> 1555 indexer = self.get_indexer(other) 1556 indexer, = (indexer == -1).nonzero() 1557 /usr/local/lib/python2.7/site-packages/pandas/core/index.pyc in get_indexer(self, target, method, limit, tolerance) 1890 1891 if not self.is_unique: -> 1892 raise InvalidIndexError('Reindexing only valid with uniquely' 1893 ' valued Index objects') 1894 InvalidIndexError: Reindexing only valid with uniquely valued Index objects
I have removed additional columns and removed duplicates and NA where there could be a conflict - but I simply do not know what's wrong.
Dealing with index and axis And by default, it is concatenating vertically along the axis 0 and preserving all existing indices. If you want the concatenation to ignore existing indices, you can set the argument ignore_index=True . Then, the resulting DataFrame index will be labeled with 0 , …, n-1 .
Pandas DataFrame reindex() Method The reindex() method allows you to change the row indexes, and the columns labels. ;] Note: The values are set to NaN if the new index is not the same as the old.
We'll pass two dataframes to pd. concat() method in the form of a list and mention in which axis you want to concat, i.e. axis=0 to concat along rows, axis=1 to concat along columns.
append() function is used to append rows of other dataframe to the end of the given dataframe, returning a new dataframe object. Columns not in the original dataframes are added as new columns and the new cells are populated with NaN value. Parameters: other : DataFrame or Series/dict-like object, or list of these.
You can mitigate this error without having to change your data or remove duplicates. Just create a new index with DataFrame.reset_index:
df = df.reset_index()
The old index is kept as a column in your dataframe, but if you don't need it you can do:
df = df.reset_index(drop=True)
Some prefer:
df.reset_index(inplace=True, drop=True)
pd.concat
requires that the indices be unique. To remove rows with duplicate indices, use
df = df.loc[~df.index.duplicated(keep='first')]
import pandas as pd from pandas import Timestamp df1 = pd.DataFrame( {'price': [0.7286, 0.7286, 0.7286, 0.7286], 'side': [2, 2, 2, 2], 'timestamp': [1451865675631331, 1451865675631400, 1451865675631861, 1451865675631866]}, index=pd.DatetimeIndex(['2000-1-1', '2000-1-1', '2001-1-1', '2002-1-1'])) df2 = pd.DataFrame( {'bid': [0.7284, 0.7284, 0.7284, 0.7285, 0.7285], 'bid_size': [4000000, 4000000, 5000000, 1000000, 4000000], 'offer': [0.7285, 0.729, 0.7286, 0.7286, 0.729], 'offer_size': [1000000, 4000000, 4000000, 4000000, 4000000]}, index=pd.DatetimeIndex(['2000-1-1', '2001-1-1', '2002-1-1', '2003-1-1', '2004-1-1'])) df1 = df1.loc[~df1.index.duplicated(keep='first')] # price side timestamp # 2000-01-01 0.7286 2 1451865675631331 # 2001-01-01 0.7286 2 1451865675631861 # 2002-01-01 0.7286 2 1451865675631866 df2 = df2.loc[~df2.index.duplicated(keep='first')] # bid bid_size offer offer_size # 2000-01-01 0.7284 4000000 0.7285 1000000 # 2001-01-01 0.7284 4000000 0.7290 4000000 # 2002-01-01 0.7284 5000000 0.7286 4000000 # 2003-01-01 0.7285 1000000 0.7286 4000000 # 2004-01-01 0.7285 4000000 0.7290 4000000 result = pd.concat([df1, df2], axis=0) print(result) bid bid_size offer offer_size price side timestamp 2000-01-01 NaN NaN NaN NaN 0.7286 2 1.451866e+15 2001-01-01 NaN NaN NaN NaN 0.7286 2 1.451866e+15 2002-01-01 NaN NaN NaN NaN 0.7286 2 1.451866e+15 2000-01-01 0.7284 4000000 0.7285 1000000 NaN NaN NaN 2001-01-01 0.7284 4000000 0.7290 4000000 NaN NaN NaN 2002-01-01 0.7284 5000000 0.7286 4000000 NaN NaN NaN 2003-01-01 0.7285 1000000 0.7286 4000000 NaN NaN NaN 2004-01-01 0.7285 4000000 0.7290 4000000 NaN NaN NaN
Note there is also pd.join
, which can join DataFrames based on their indices, and handle non-unique indices based on the how
parameter. Rows with duplicate index are not removed.
In [94]: df1.join(df2) Out[94]: price side timestamp bid bid_size offer \ 2000-01-01 0.7286 2 1451865675631331 0.7284 4000000 0.7285 2000-01-01 0.7286 2 1451865675631400 0.7284 4000000 0.7285 2001-01-01 0.7286 2 1451865675631861 0.7284 4000000 0.7290 2002-01-01 0.7286 2 1451865675631866 0.7284 5000000 0.7286 offer_size 2000-01-01 1000000 2000-01-01 1000000 2001-01-01 4000000 2002-01-01 4000000 In [95]: df1.join(df2, how='outer') Out[95]: price side timestamp bid bid_size offer offer_size 2000-01-01 0.7286 2 1.451866e+15 0.7284 4000000 0.7285 1000000 2000-01-01 0.7286 2 1.451866e+15 0.7284 4000000 0.7285 1000000 2001-01-01 0.7286 2 1.451866e+15 0.7284 4000000 0.7290 4000000 2002-01-01 0.7286 2 1.451866e+15 0.7284 5000000 0.7286 4000000 2003-01-01 NaN NaN NaN 0.7285 1000000 0.7286 4000000 2004-01-01 NaN NaN NaN 0.7285 4000000 0.7290 4000000
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With