I am looking for an optimal way to program this summation ratio. As input I have two vectors v_mn
and x_mn
with (M*N)x1
elements each.
The ratio is of the form:
The vector x_mn
is 0-1
vector so when x_mn=1
, the ration is r
given above and when x_mn=0
the ratio is 0
.
The vector v_mn
is a vector which contain real numbers.
I did the denominator like this but it takes a lot of times.
function r_ij = denominator(v_mn, M, N, i, j)
%here x_ij=1, to get r_ij.
S = [];
for m = 1:M
for n = 1:N
if (m ~= i)
if (n ~= j)
S = [S v_mn(i, n)];
else
S = [S 0];
end
else
S = [S 0];
end
end
end
r_ij = 1+S;
end
Can you give a good way to do it in matlab. You can ignore the ratio and give me the denominator which is more complicated.
EDIT: I am sorry I did not write it very good. The i
and j
are some numbers between 1..M
and 1..N
respectively. As you can see, the ratio r
is many values (M*N
values). So I calculated only the value i
and j
. More precisely, I supposed x_ij=1
. Also, I convert the vectors v_mn
into a matrix that's why I use double index.
If you reshape your data, your summation is just a repeated matrix/vector multiplication.
Here's an implementation for a single m
and n
, along with a simple speed/equality test:
clc
%# some arbitrary test parameters
M = 250;
N = 1000;
v = rand(M,N); %# (you call it v_mn)
x = rand(M,N); %# (you call it x_mn)
m0 = randi(M,1); %# m of interest
n0 = randi(N,1); %# n of interest
%# "Naive" version
tic
S1 = 0;
for mm = 1:M %# (you call this m')
if mm == m0, continue; end
for nn = 1:N %# (you call this n')
if nn == n0, continue; end
S1 = S1 + v(m0,nn) * x(mm,nn);
end
end
r1 = v(m0,n0)*x(m0,n0) / (1+S1);
toc
%# MATLAB version: use matrix multiplication!
tic
ninds = [1:m0-1 m0+1:M];
minds = [1:n0-1 n0+1:N];
S2 = sum( x(minds, ninds) * v(m0, ninds).' );
r2 = v(m0,n0)*x(m0,n0) / (1+S2);
toc
%# Test if values are equal
abs(r1-r2) < 1e-12
Outputs on my machine:
Elapsed time is 0.327004 seconds. %# loop-version
Elapsed time is 0.002455 seconds. %# version with matrix multiplication
ans =
1 %# and yes, both are equal
So the speedup is ~133×
Now that's for a single value of m
and n
. To do this for all values of m
and n
, you can use an (optimized) double loop around it:
r = zeros(M,N);
for m0 = 1:M
xx = x([1:m0-1 m0+1:M], :);
vv = v(m0,:).';
for n0 = 1:N
ninds = [1:n0-1 n0+1:N];
denom = 1 + sum( xx(:,ninds) * vv(ninds) );
r(m0,n0) = v(m0,n0)*x(m0,n0)/denom;
end
end
which completes in ~15 seconds on my PC for M = 250, N= 1000
(R2010a).
EDIT: actually, with a little more thought, I was able to reduce it all down to this:
denom = zeros(M,N);
for mm = 1:M
xx = x([1:mm-1 mm+1:M],:);
denom(mm,:) = sum( xx*v(mm,:).' ) - sum( bsxfun(@times, xx, v(mm,:)) );
end
denom = denom + 1;
r_mn = x.*v./denom;
which completes in less than 1 second for N = 250
and M = 1000
:)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With