I'm running my code, that consist in find average values. In a ~6 million lines CSV (ssm_resnik.txt), the first row is one reference, the second row is another and the third value is the 'distance' between the 2 references. Such distances are arbitrarly defined by biological criteria not important for this issue. Most of the the references will be versus... most of the references, hence the huge CSV with more than 6 millions of lines. In another CSV (all_spot_uniprot.txt) i have ~3600 spot's (first column), each of them with 1 or more reference (third column). The values are the same of the huge CSV. I need to compare each of the 3600 of the spot ref of the second file with all other 3600-1 ref's in the same file. All of the possible combinations, if exists, are in the first, huge CSV file (ssm_resnik.txt). For the all_spot_uniprot.txt, each 2 spot ref's will serve as iterator for the correspondent reference (in the third column) and will iterate over the huge CSV file that, if exists, show the value for the two "VS" reference.
What is the problem with my code? Well... For 10 seconds for each iteration, 3600 *3600 *10 = 129.600.000 seconds = 1500 days (almost 5 years). This happens in my core i3, but well in a mac. Below is my code and a portion of each file. Please advice me. There are any code design flaw? There are some way to reduce the computation time? Thanks in advance...
import csv
spot_to_uniprot=open('all_spot_uniprot.txt', 'rbU')
STU=csv.reader(spot_to_uniprot, delimiter='\t')
uniprot_vs_uniprot=open('ssm_resnik.txt', 'rbU')
allVSall= csv.reader(uniprot_vs_uniprot, delimiter='\t')
recorder=open('tabela_final.csv', 'wb')
fout=csv.writer(recorder, delimiter='\t', quotechar='"')
dict_STU={} #dicionário 'spot to uniprot'
dict_corresp={} #for each pair of uniprot ref as key and as value
#a list of lists with the first list as one spot and the second list is the spot+1
dict_corresp_media={}##average of one spot to other
total_correspondencias_x_y=[]
_lista_spot=[]
lista_spot=[]
lista_temp=[]
lista_CSV=[]
for a in STU:
_lista_spot.append(int(a[0]))
if a[0] not in dict_STU.keys():
dict_STU[a[0]]=[]
dict_STU[a[0]].append(a[2])
else:
dict_STU[a[0]].append(a[2])
n_spot=max(_lista_spot)
spot_to_uniprot.close()
##for aa in _lista_spot:
## lista_spot.append(int(aa))
##lista_spot.sort()
for i in allVSall:
lista_CSV.append(i)
tuple_CSV=tuple(lista_CSV)
uniprot_vs_uniprot.close()
for h in range(1, n_spot):
for _h in range(h+1, n_spot+1):
#print h, 'h da lista_spot'
del total_correspondencias_x_y[:]
total_correspondencias_x_y.append(dict_STU[str(h)])
#print h, 'h'
#print _h, '_h'
#print __h, '__h'
total_correspondencias_x_y.append(dict_STU[str(_h)])
print total_correspondencias_x_y, 'total_corresp_x_y'
for c1 in total_correspondencias_x_y[0]:
if c1=='No Data':
pass
else:
for c2 in total_correspondencias_x_y[1]:
if c2=='No Data':
pass
else:
#print c1, c2, 'c1 e c2'
for c3 in lista_CSV:
if c1 in c3[0]:
if c2 in c3[1]:
lista_temp.append(c3[2])
print lista_temp, 'lista_temp'
elements=len(lista_temp)
if len(lista_temp)==0:
dict_corresp_media[str(h)+'_'+str(_h)]=0
else:
temp_d=0
for d in lista_temp:
temp_d +=float(d)
media_spots=temp_d/elements
dict_corresp_media[str(h)+'_'+str(_h)]=media_spots
print dict_corresp_media[str(h)+'_'+str(_h)]
lista_temp=[]
recorder.close()
This is a portion of my files:
all_spot_uniprot.txt
1 spr0001 Q8DRQ4
1 SP0001 O08397
1 SPN01072 B5E568
2 spr0002 P59651
2 SP0002 O06672
2 SPN01074 B5E569
3 spr0005 Q8DRQ2
3 SP0005 Q97TD1
3 SPN01078 B5E572
4 spr0006 Q8DRQ1
4 SP0006 Q97TD0
4 SPN01079 B5E573
5 spr0009 Q8DRQ0
5 SP0009 Q97TC7
6 spr0010 Q8DRP9
6 SP0011 Q97TC5
6 SPN01085 B5E578
7 spr0012 P59652
7 SP0013 O69076
7 SPN01087 B5E580
8 spr0017 Q8DRP6
8 SP0017 No Data
8 SPN01090 B5E5G4
9 spr0020 Q8CZD0
9 SP0018 Q97TC2
9 SPN01093 B5E5G7
10 spr0021 P65888
10 SP0019 P65887
.. ...... ...... ......
.. ...... ...... ......
3617 spr2016 Q8DMY7
3617 spr0324 Q8DR62
3617 SP2211 No Data
3617 SP1311 No Data
3617 SP1441 No Data
3617 SPN11022 No Data
3617 SPN01038 No Data
3617 SPN08246 No Data
3618 spr2018 Q8DMY5
3618 SP0812 No Data
3618 SP2213 No Data
3618 SPN04196 B5E3J0
3618 SPN01040 B5E3V9
3619 spr2040 Q8DMW6
3619 SP2234 Q97N38
3619 SPN01065 B5E462
3620 spr2043 P60243
ssm_resnik.txt
Q8DRQ4 O08397 1.0
Q8DRQ4 B5E568 1.0
Q8DRQ4 P59651 0.12077157944440875
Q8DRQ4 O06672 0.12077157944440875
Q8DRQ4 B5E569 0.12077157944440875
Q8DRQ4 Q8DRQ1 0.12077157944440875
Q8DRQ4 Q97TD0 0.12077157944440875
Q8DRQ4 B5E573 0.12077157944440875
Q8DRQ4 Q8DRP9 0.07139907404780385
Q8DRQ4 Q97TC5 0.07139907404780385
Q8DRQ4 B5E578 0.07139907404780385
Q8DRQ4 P59652 0.04789965413510797
Q8DRQ4 O69076 0.04789965413510797
Q8DRQ4 B5E580 0.04698170092888175
Q8DRQ4 Q8DRP6 0.12077157944440875
Q8DRQ4 P65888 0.05619465373456477
Q8DRQ4 P65887 0.05619465373456477
Q8DRQ4 B5E5G8 0.05619465373456477
Q8DRQ4 Q8DRP3 0.0115283466875553
Q8DRQ4 Q97TC0 0.0115283466875553
Q8DRQ4 B5E5G9 0.0115283466875553
Q8DRQ4 Q8DRP2 0.05619465373456477
Q8DRQ4 Q97TB9 0.05619465373456477
Q8DRQ4 B5E5H1 0.05619465373456477
Q8DRQ4 Q8DRP0 0.12077157944440875
Q8DRQ4 B5E5H3 0.12077157944440875
Q8DRQ4 Q8DNI4 0.12077157944440875
Q8DRQ4 Q8CWP0 0.12077157944440875
Q8DRQ4 Q97CV3 0.12077157944440875
Q8DRQ4 Q97P52 0.12077157944440875
O08397 Q97PH8 0.12077157944440875
O08397 P59200 0.10979991157849654
O08397 P59199 0.10979991157849654
O08397 B5E5I1 0.12077157944440875
O08397 Q8DRN5 0.047725405544042546
O08397 Q97TA8 0.047725405544042546
O08397 B5E5I4 0.047725405544042546
O08397 Q8DRN4 0.1555714706579846
O08397 Q97TA7 0.1555714706579846
O08397 B5E5I5 0.1555714706579846
O08397 Q97TA6 0.02938784938305615
O08397 Q8DRN2 0.02938784938305615
O08397 Q9F7T4 0.02938784938305615
O08397 P59653 0.04191624792292713
O08397 Q03727 0.04191624792292713
O08397 B5E5J1 0.045754049904644475
O08397 P59654 0.01167129073292015
O08397 P36498 0.01167129073292015
O08397 B5E5J2 0.0
O08397 Q8DRM7 0.05619465373456477
O08397 Q07296 0.05619465373456477
O08397 B5E5J3 0.05619465373456477
O08397 Q97TA3 0.05619465373456477
O08397 B5E5J5 0.05619465373456477
O08397 Q97T99 0.05619465373456477
O08397 Q8DRL9 0.05619465373456477
O08397 Q97T96 0.05619465373456477
O08397 B5E5K1 0.05619465373456477
O08397 Q97T95 0.05619465373456477
O08397 Q8DRL7 0.05619465373456477
6 million rows can either be held in memory or in a SQLite database. Put it there and make use of the lookup optimizations that offers:
with open('ssm_resnik.txt', 'rbU') as uniprot_vs_uniprot:
reader = csv.reader(uniprot_vs_uniprot, delimiter='\t')
allVSall = { tuple(r[:2]): float(r[2]) for r in reader }
Now allVSall
is a mapping offering O(1) lookups; this saves you having to loop over the whole 6 million rows for each and every combination you generate. That is a lot of loops saved.
Using a collections.defaultdict
is easier when reading the all_spot_uniprot
list:
from collections import defaultdict
dict_STU = defaultdict(list)
with open('all_spot_uniprot.txt', 'rbU') as spot_to_uniprot:
reader = csv.reader(spot_to_uniprot, delimiter='\t')
for row in reader:
dict_STU[int(row[0])].append(row[2])
There is no need to find a max
value here, simply list the keys and pass these to the itertools.permutations
and itertools.product
functions to generate combinations.
The following code replicates what yours does in more compact form, with fewer lists, and with O(1) dictionary lookups so fewer loops:
from itertools import permutations, product, ifilter
no_no_data = lambda v: v != 'No Data'
dict_corresp_media = {}
for a, b in permutations(dict_STU.iterkeys(), r=2):
# retrieve the a and b lists of possible keys, for which we need to loop over their products
# we filter each for the `No Data` keys
aval, bval = ifilter(no_no_data, dict_STU[a]), ifilter(no_no_data, dict_STU[b])
matches = [allVSall[c1, c2] for c1, c2 in product(aval, bval) if (c1, c2) in allVSall]
dict_corresp_media['{}_{}'.format(a, b)] = sum(matches) / len(matches) if matches else 0
For your input samples, it spits out, in a fraction of a second:
>>> pprint.pprint(dict_corresp_media)
{'10_1': 0,
'10_2': 0,
'10_3': 0,
'10_4': 0,
'10_5': 0,
'10_6': 0,
'10_7': 0,
'10_8': 0,
'10_9': 0,
'1_10': 0.05619465373456477,
'1_2': 0.12077157944440875,
'1_3': 0,
'1_4': 0.12077157944440875,
'1_5': 0,
'1_6': 0.07139907404780385,
'1_7': 0.04759366973303256,
'1_8': 0.12077157944440875,
'1_9': 0,
'2_1': 0,
'2_10': 0,
'2_3': 0,
'2_4': 0,
'2_5': 0,
'2_6': 0,
'2_7': 0,
'2_8': 0,
'2_9': 0,
'3_1': 0,
'3_10': 0,
'3_2': 0,
'3_4': 0,
'3_5': 0,
'3_6': 0,
'3_7': 0,
'3_8': 0,
'3_9': 0,
'4_1': 0,
'4_10': 0,
'4_2': 0,
'4_3': 0,
'4_5': 0,
'4_6': 0,
'4_7': 0,
'4_8': 0,
'4_9': 0,
'5_1': 0,
'5_10': 0,
'5_2': 0,
'5_3': 0,
'5_4': 0,
'5_6': 0,
'5_7': 0,
'5_8': 0,
'5_9': 0,
'6_1': 0,
'6_10': 0,
'6_2': 0,
'6_3': 0,
'6_4': 0,
'6_5': 0,
'6_7': 0,
'6_8': 0,
'6_9': 0,
'7_1': 0,
'7_10': 0,
'7_2': 0,
'7_3': 0,
'7_4': 0,
'7_5': 0,
'7_6': 0,
'7_8': 0,
'7_9': 0,
'8_1': 0,
'8_10': 0,
'8_2': 0,
'8_3': 0,
'8_4': 0,
'8_5': 0,
'8_6': 0,
'8_7': 0,
'8_9': 0,
'9_1': 0,
'9_10': 0,
'9_2': 0,
'9_3': 0,
'9_4': 0,
'9_5': 0,
'9_6': 0,
'9_7': 0,
'9_8': 0}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With