I'm trying to achieve a visualization of a specific graph (a Cayley graph of a symmetric permutation group) as the one done here but using Graphviz 2.28 with Dot.
(source: euclideanspace.com)
digraph cayley {
i -> x [color=red];
i -> y [color=blue];
x -> xx [color=red];
x -> xy [color=blue];
y -> yx [color=red];
y -> yy [color=blue];
xx -> xxx [color=red];
xx -> xxy [color=blue];
xy -> xyx [color=red];
xy -> xyy [color=blue];
yx -> yxx [color=red];
yx -> xyx [color=blue];
yy -> yyx [color=red];
yy -> yyy [color=blue];
xxx -> i [color=red];
xxx -> xxxy [color=blue];
xxy -> xxyx [color=red];
xxy -> xxyy [color=blue];
xyx -> xyxx [color=red];
xyx -> xxyx [color=blue];
xyy -> yy [color=red];
xyy -> xyyy [color=blue];
yxx -> yxxx [color=red];
yxx -> xx [color=blue];
yyx -> xxyy [color=red];
yyx -> xyxx [color=blue];
yyy -> yyyx [color=red];
yyy -> i [color=blue];
xxxy -> xxxyx [color=red];
xxxy -> yyx [color=blue];
xxyx -> yyy [color=red];
xxyx -> xxxyx [color=blue];
xxyy -> xyy [color=red];
xxyy -> yxx [color=blue];
xyxx -> xyxxx [color=red];
xyxx -> xxx [color=blue];
xyyy -> xyyyx [color=red];
xyyy -> x [color=blue];
yxxx -> y [color=red];
yxxx -> xyyyx [color=blue];
yyyx -> xxy [color=red];
yyyx -> xyxxx [color=blue];
xxxyx -> xyyy [color=red];
xxxyx -> yx [color=blue];
xyxxx -> xy [color=red];
xyxxx -> yxxx [color=blue];
xyyyx -> xxxy [color=red];
xyyyx -> yyyx [color=blue];
}
My Dot generates the following layout: which is a pretty huge graph compared with the previous one. Is there any attribute that can compact the graph as close as possible to the first one ?
I modified the codes such as graph, node and edge default attributes to make the layout as compacted as possible. Maybe there is a more perfect approach. By the way, the node i
is located at the left but not right.
digraph cayley {
graph[rankdir=LR, center=true, margin=0.2, nodesep=0.1, ranksep=0.3]
node[shape=circle, fontname="Courier-Bold", fontsize=10, width=0.4, height=0.4, fixedsize=true]
edge[arrowsize=0.6, arrowhead=vee]
i -> x [color=red];
i -> y [color=blue];
x -> xx [color=red];
x -> xy [color=blue];
y -> yx [color=red];
y -> yy [color=blue];
xx -> xxx [color=red];
xx -> xxy [color=blue];
xy -> xyx [color=red];
xy -> xyy [color=blue];
yx -> yxx [color=red];
yx -> xyx [color=blue];
yy -> yyx [color=red];
yy -> yyy [color=blue];
xxx -> i [color=red];
xxx -> xxxy [color=blue];
xxy -> xxyx [color=red];
xxy -> xxyy [color=blue];
xyx -> xyxx [color=red];
xyx -> xxyx [color=blue];
xyy -> yy [color=red];
xyy -> xyyy [color=blue];
yxx -> yxxx [color=red];
yxx -> xx [color=blue];
yyx -> xxyy [color=red];
yyx -> xyxx [color=blue];
yyy -> yyyx [color=red];
yyy -> i [color=blue];
xxxy -> xxxyx [color=red];
xxxy -> yyx [color=blue];
xxyx -> yyy [color=red];
xxyx -> xxxyx [color=blue];
xxyy -> xyy [color=red];
xxyy -> yxx [color=blue];
xyxx -> xyxxx [color=red];
xyxx -> xxx [color=blue];
xyyy -> xyyyx [color=red];
xyyy -> x [color=blue];
yxxx -> y [color=red];
yxxx -> xyyyx [color=blue];
yyyx -> xxy [color=red];
yyyx -> xyxxx [color=blue];
xxxyx -> xyyy [color=red];
xxxyx -> yx [color=blue];
xyxxx -> xy [color=red];
xyxxx -> yxxx [color=blue];
xyyyx -> xxxy [color=red];
xyyyx -> yyyx [color=blue];
{ rank=same; x; y }
{ rank=same; xx; xy; yx; yy }
{ rank=same; xxx; xxy; xyx; xyy; yxx; yyx; yyy }
{ rank=same; xxxy; xxyx; xxyy; xyxx; xyyy; yxxx; yyyx }
{ rank=same; xxxyx; xyxxx; xyyyx }
}
The image is shown as following.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With