The example here What is the difference between 'log' and 'symlog'? nicely shows how a linear scale at the origin can be used with a log scale elsewhere. I want to go the other way around. I want to have a a log scale from 1-100 and then a linear! scale from 100-1000. What are my options? Like the figure above This attempt did not work
import matplotlib.pyplot as plt
plt.figure()
plt.errorbar(x, y, yerr=yerrors)
plt.xscale('symlog', linthreshx= (100,1000))
The problem seems to be that linthreshx is defined to take the range (-x,x). So if x if 5 we would get a linear scale on (-5,5). One is confined to the origin. I thought simply choosing a different range should work but it does not. Any ideas?
The method yscale() or xscale() takes a single value as a parameter which is the type of conversion of the scale, to convert axes to logarithmic scale we pass the “log” keyword or the matplotlib. scale. LogScale class to the yscale or xscale method.
What Does Matplotlib Mean? Matplotlib is a plotting library available for the Python programming language as a component of NumPy, a big data numerical handling resource. Matplotlib uses an object oriented API to embed plots in Python applications.
symlog means symmetrical log, and allows positive and negative values. symlog allows to set a range around zero within the plot will be linear instead of logarithmic.
The logarithmic scale in Matplotlib The scale means the graduations or tick marks along an axis. They can be any of: matplotlib. scale. LinearScale—These are just numbers, like 1, 2, 3.
From the response of user1318806 to cphlewis:
Thank you. Actually I wanted a combination of log+linear on the x axis not y. But I assume your code should be easily adaptable.
Hello! If you wanted a combination of log+linear on the x-axis (patterned from the code of Duncan Watts and CubeJockey):
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
# Numbers from -50 to 50, with 0.1 as step
xdomain = np.arange(-50,50, 0.1)
axMain = plt.subplot(111)
axMain.plot(np.sin(xdomain), xdomain)
axMain.set_xscale('linear')
axMain.set_xlim((0.5, 1.5))
axMain.spines['left'].set_visible(False)
axMain.yaxis.set_ticks_position('right')
axMain.yaxis.set_visible(False)
divider = make_axes_locatable(axMain)
axLin = divider.append_axes("left", size=2.0, pad=0, sharey=axMain)
axLin.set_xscale('log')
axLin.set_xlim((0.01, 0.5))
axLin.plot(np.sin(xdomain), xdomain)
axLin.spines['right'].set_visible(False)
axLin.yaxis.set_ticks_position('left')
plt.setp(axLin.get_xticklabels(), visible=True)
plt.title('Linear right, log left')
The code above yields:
(MISCELLANEOUS) Here's a very minor fix for the title and the absence of tick marks on the right side:
# Fix for: title + no tick marks on the right side of the plot
ax2 = axLin.twinx()
ax2.spines['left'].set_visible(False)
ax2.tick_params(axis='y',which='both',labelright='off')
Adding these lines will give you this:
pythonmatplotlib
I assume you want linear near the origin, log farther -- since `symlog' does it the other way around -- I couldn't come up with data that looked good like this, but you can put it together with the axes_grid:
# linear and log axes for the same plot?
# starting with the histogram example from
# http://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
# Numbers from -50 to 50, with 0.1 as step
xdomain = np.arange(-50,50, 0.1)
axMain = plt.subplot(111)
axMain.plot(xdomain, np.sin(xdomain))
axMain.set_yscale('log')
axMain.set_ylim((0.01, 0.5))
divider = make_axes_locatable(axMain)
axLin = divider.append_axes("top", size=2.0, pad=0.02, sharex=axMain)
axLin.plot(xdomain, np.sin(xdomain))
axLin.set_xscale('linear')
axLin.set_ylim((0.5, 1.5))
plt.title('Linear above, log below')
plt.show()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With