I run a loop 200 times within which I:
randomly divide my dataset into training and test sets
fit a neural networks model with R's nnet() command on the training set
assess performance on the test set
I save each model to a list.
Now I want to use a combined model to make out-of-sample predictions. I've used the combine function for this purpose on randomForest objects. Is there a similar combine command for nnet objects?
I cannot upload the dataset but below is the code I'm currently working with. It works as is, except for the last line where I seek a command to combine models.
    n <- 200
    nnet_preds <- matrix(NA,  ncol = 1,  nrow = n)
    nnet_predstp <- matrix(NA,  ncol = 1,  nrow = n)
    nnet_predstn <- matrix(NA,  ncol = 1,  nrow = n)
    nnet_predsfptp <- matrix(NA,  ncol = 1,  nrow = n)
    nnet_predsfntp <- matrix(NA,  ncol = 1,  nrow = n)
    NN_predictions <- matrix(NA,  ncol = 1,  nrow = 10) 
    outcome_2010_NN <- testframe2[, "ytest"] 
    nn_model <- vector("list", n)
    data<-testframe2[, c("sctownpop", "sctownhh", "scnum_tribes", "sctownmusl_percap", "scmuslim", "scprop_stranger", "sctownstrg_percap", "scprop_domgroup", "scexcom", "sctownexcm_percap", "sctownretn_percap", "scprop_under30", "scprop_male", "scedulevel", "scprop_noeduc", "scprop_anypeace", "scgroup_prtcptn", "scpubcontr", "scsafecommdum", "scciviccommdum", "scoll_action_add", "scngodependent", "scgovtdependent", "scpolicourtscorr", "screlmarry", "scmslmnolead", "sccrime_scale", "scviol_scale", "sclandconf_scale", "sctownnlnd_percap", "scnolandnofarm", "scfarmocc", "scunemployed", "scwealthindex", "scwealth_inequality", "scviol_experienced", "scviol_part", "scanylndtake", "scdisp_ref", "sfacilities", "sfreq_visits", "sctot_resources", "scmeanprice_above75", "scmosquesdum", "scmnrt_ldrshp", "scany_majorconf", "sstate_presence", "sremote", "scmobilec", "scradio_low")]
    data = cbind(outcome_2010_NN, data)
    sampleSplit = round(nrow(data)-(nrow(data)/5))
    for(i in 1:n) {     
set.seed(06511+i)
    data_randomization <- data[sample(1:nrow(data),  dim(data)[1],  replace=FALSE), ]
    train <- data_randomization[1:sampleSplit, ]
    test  <- data_randomization[(sampleSplit+1):nrow(data), ]
    nn_model[[i]] <- nnet(outcome_2010_NN ~ sctownpop +           sctownhh+ scnum_tribes+ sctownmusl_percap+ scmuslim+          scprop_stranger+   sctownstrg_percap+ scprop_domgroup+     scexcom+  sctownexcm_percap+   sctownretn_percap+   scprop_under30 +  scprop_male+         scedulevel+          scprop_noeduc+       scprop_anypeace+     scgroup_prtcptn+     scpubcontr+          scsafecommdum+       scciviccommdum+      scoll_action_add+    scngodependent+      scgovtdependent+     scpolicourtscorr+    screlmarry+          scmslmnolead+        sccrime_scale+       scviol_scale+        sclandconf_scale+    sctownnlnd_percap+   scnolandnofarm+      scfarmocc+           scunemployed+        scwealthindex+       scwealth_inequality+ scviol_experienced+  scviol_part+         scanylndtake+        scdisp_ref+          sfacilities+         sfreq_visits+        sctot_resources+     scmeanprice_above75+ scmosquesdum+        scmnrt_ldrshp+       scany_majorconf+     sstate_presence+     sremote+             scmobilec+           scradio_low, 
    data=train,  size = 3,  decay = 0.1)# size=number of units/nodes in the (single_hidden layer); decay=parameter for weight decay. Default 0.
    predictions <- predict(nn_model[[i]],  test)
    nnpredorder<-rank(predictions)
    nncvpredictionsA50 <- ifelse( nnpredorder > 24,  1,  0 )    # manually optimized
    errors <- table(test[, "outcome_2010_NN"],  nncvpredictionsA50)             
    accuracy.rate <- (errors[1, 1]+errors[2, 2])/sum(errors)
    true.pos.rate <- (errors[2, 2]/(errors[2, 2]+errors[2, 1]))
    true.neg.rate <- (errors[1, 1]/(errors[1, 1]+errors[1, 2]))
    FPTP <- (errors[1, 2]/errors[2, 2])
    FNTP <- (errors[2, 1]/errors[2, 2])
    nnet_preds[i, ] <- accuracy.rate
    nnet_predstp[i, ] <- true.pos.rate
    nnet_predstn[i, ] <- true.neg.rate
    nnet_predsfptp[i, ] <- FPTP
    nnet_predsfntp[i, ] <- FNTP
}
    mean(nnet_preds); sd(nnet_preds)
    mean(nnet_predstp); sd(nnet_predstp)
    NN_predictions[1, ] <- mean(nnet_predstp) # TP accuracy rate (sensitivity)
    NN_predictions[2, ] <- sd(nnet_predstp) # TP accuracy rate (sensitivity)
    NN_predictions[3, ] <- mean(nnet_predstn)  # TN accuracy rate (specificity)
    NN_predictions[4, ] <- sd(nnet_predstn) # TN accuracy rate (specificity)
    NN_predictions[5, ] <- mean(nnet_preds)  # Accuracy rate
    NN_predictions[6, ] <- sd(nnet_preds) # Accuracy rate
    NN_predictions[7, ] <- mean(nnet_predsfptp)  # Ratio FP:TP
    NN_predictions[8, ] <- sd(nnet_predsfptp) # Ratio FP:TP
    NN_predictions[9, ] <- mean(nnet_predsfntp)  # Ratio FN:TP
    NN_predictions[10, ] <- sd(nnet_predsfntp) # Ratio FN:TP
    print(NN_predictions)
### Combine NN models  #Where `combine` is the randomForest command     
aggNNmodel <- do.call(combine, nn_model)
                You should not be able to use Random Forest's combine method since it is for decision trees. But Random Forest is boosting algorithm therefore you should be able to use a boosting algorithm for combining neural network models.
Boosting is an approach to combine weak learners but there is not rule against using a strong learner like neural network for boosting.
Can a set of weak learners create a single strong learner?
Use a boosting algorithm like AdaBoost with your Neural network as its weak learner. A google search shows couple of boosting packages in R.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With