Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Column filtering in PySpark

I have a dataframe df loaded from Hive table and it has a timestamp column, say ts, with string type of format dd-MMM-yy hh.mm.ss.MS a (converted to python datetime library, this is %d-%b-%y %I.%M.%S.%f %p).

Now I want to filter rows from the dataframe that are from the last five minutes:

only_last_5_minutes = df.filter(
    datetime.strptime(df.ts, '%d-%b-%y %I.%M.%S.%f %p') > datetime.now() - timedelta(minutes=5)
)

However, this does not work and I get this message

TypeError: strptime() argument 1 must be string, not Column

It looks like I have wrong application of column operation and it seems to me I have to create a lambda function to filter each column that satisfies the desired condition, but being a newbie to Python and lambda expression in particular, I don't know how to create my filter correct. Please advise.

P.S. I prefer to express my filters as Python native (or SparkSQL) rather than a filter inside Hive sql query expression 'WHERE'.

preferred:

df = sqlContext.sql("SELECT * FROM my_table")
df.filter( // filter here)

not preferred:

df = sqlContext.sql("SELECT * FROM my_table WHERE...")
like image 799
oikonomiyaki Avatar asked Jul 14 '15 07:07

oikonomiyaki


1 Answers

Spark >= 1.5

Since Spark 1.5 you can parse date string as follows:

from pyspark.sql.functions import expr, from_unixtime, lit, unix_timestamp
from pyspark.sql.types import TimestampType

parsed_df = df.select((from_unixtime(unix_timestamp(
    # Note: am-pm: pattern length should be 1 for Spark >= 3.0
    df.datetime, "dd-MMM-yy h.mm.ss.SSSSSS a"  
))).cast(TimestampType()).alias("datetime"))

parsed_df.where(col("datetime") >= lit(now) - expr("INTERVAL 5 minutes"))

and then apply intervals:

from pyspark.sql.functions import current_timestamp, expr

Spark < 1.5

It is possible to use user defined function.

from datetime import datetime, timedelta
from pyspark.sql.types import BooleanType, TimestampType
from pyspark.sql.functions import udf, col

def in_last_5_minutes(now):
    def _in_last_5_minutes(then):
        then_parsed = datetime.strptime(then, '%d-%b-%y %I.%M.%S.%f %p')
        return then_parsed > now - timedelta(minutes=5)
    return udf(_in_last_5_minutes, BooleanType())

Using some dummy data:

df = sqlContext.createDataFrame([
    (1, '14-Jul-15 11.34.29.000000 AM'),
    (2, '14-Jul-15 11.34.27.000000 AM'),
    (3, '14-Jul-15 11.32.11.000000 AM'),
    (4, '14-Jul-15 11.29.00.000000 AM'),
    (5, '14-Jul-15 11.28.29.000000 AM')
], ('id', 'datetime'))

now = datetime(2015, 7, 14, 11, 35)
df.where(in_last_5_minutes(now)(col("datetime"))).show()

And as expected we get only 3 entries:

+--+--------------------+
|id|            datetime|
+--+--------------------+
| 1|14-Jul-15 11.34.2...|
| 2|14-Jul-15 11.34.2...|
| 3|14-Jul-15 11.32.1...|
+--+--------------------+

Parsing datetime string all over again is rather inefficient so you may consider storing TimestampType instead.

def parse_dt():
    def _parse(dt):
        return datetime.strptime(dt, '%d-%b-%y %I.%M.%S.%f %p')
    return udf(_parse, TimestampType())

df_with_timestamp = df.withColumn("timestamp", parse_dt()(df.datetime))

def in_last_5_minutes(now):
    def _in_last_5_minutes(then):
        return then > now - timedelta(minutes=5)
    return udf(_in_last_5_minutes, BooleanType())

df_with_timestamp.where(in_last_5_minutes(now)(col("timestamp")))

and result:

+--+--------------------+--------------------+
|id|            datetime|           timestamp|
+--+--------------------+--------------------+
| 1|14-Jul-15 11.34.2...|2015-07-14 11:34:...|
| 2|14-Jul-15 11.34.2...|2015-07-14 11:34:...|
| 3|14-Jul-15 11.32.1...|2015-07-14 11:32:...|
+--+--------------------+--------------------+

Finally it is possible to use raw SQL query with timestamps:

query = """SELECT * FROM df
     WHERE unix_timestamp(datetime, 'dd-MMM-yy HH.mm.ss.SSSSSS a') > {0}
     """.format(time.mktime((now - timedelta(minutes=5)).timetuple()))

sqlContext.sql(query)

Same as above it would be more efficient to parse date strings once.

If column is already a timestamp it possible to use datetime literals:

from pyspark.sql.functions import lit

df_with_timestamp.where(
    df_with_timestamp.timestamp > lit(now - timedelta(minutes=5)))
like image 52
zero323 Avatar answered Oct 10 '22 05:10

zero323