Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Color different image parts javascript

I have an img tag. The image inserted has different parts:Image I want to be able to color each white part alone. I tried using this function:

function getPixels(img)
{
    canvas.width = img.width;
    canvas.height = img.height;

    ctx.drawImage(img, 0, 0, img.naturalWidth, img.naturalHeight, 0, 0, img.width, img.height);
    originalPixels = ctx.getImageData(0, 0, img.width, img.height);
    currentPixels = ctx.getImageData(0, 0, img.width, img.height);

    img.onload = null;
}

function hexToRGB(hex)
{
  console.log(hex)
    var long = parseInt(hex.replace(/^#/, ""), 16);
    return {
        R: (long >>> 16) & 0xff,
        G: (long >>> 8) & 0xff,
        B: long & 0xff
    };
}

function changeColor(a,b,c)
{
    if(!originalPixels) return; // Check if image has loaded
    var newColor = {R: eval(a), G: eval(b), B: eval(c)};

    for(var I = 0, L = originalPixels.data.length; I < L; I += 4)
    {
        if(currentPixels.data[I + 3] > 0) // If it's not a transparent pixel
        {
          console.log(currentPixels.data[I + 3])
           if ((currentPixels.data[I]!=0 && currentPixels.data[I+1]!=0 && currentPixels.data[I+2]!=0)) {
            currentPixels.data[I] = newColor.R;
            currentPixels.data[I + 1] = newColor.G;
            currentPixels.data[I + 2] = newColor.B;
           }
        }
    }
    console.log(newColor)
    ctx.putImageData(currentPixels, 0, 0);
    mug.src = canvas.toDataURL("image/png");
}

function valueToHex(c) {

  var hex1 = c.toString(16);

  return hex1


}

But this is the output: output

I had the idea to make a condition in which i can detect all the white pixels color them and stop when a black pixel is detected, so it doesn't go out of line, and then i can color each white part of the image of a different color. But i didn't know how to do it as i'm really new to the pixel field. Could you help me please?

like image 270
Nour Hariz Avatar asked Jan 27 '26 08:01

Nour Hariz


1 Answers

If you want to be able to do this with any image and color, consider implementing a Flood fill algorithm. In short, it's the same algorithm used by the "bucket" fill tool in most paint programs, which fills connected, similarly-colored areas. In your case, you would give the algorithm a starting coordinate for each closed white region you want to fill into a different color.

Here is a sample implementation with your image:

const img = document.querySelector("img");
const canvas = document.querySelector("canvas");
const ctx = canvas.getContext("2d");

const THRESHOLD = 50;

// make sure image has been decoded and is ready to use
img.decode().then(() => {
    ctx.drawImage(img, 0, 0, img.naturalWidth, img.naturalHeight, 0, 0, canvas.width, canvas.height);
    fillColor(ctx, 50, 50, "#0000ff", THRESHOLD);
    fillColor(ctx, 65, 100, "#0099ff", THRESHOLD);
    fillColor(ctx, 250, 50, "#0000ff", THRESHOLD);
    fillColor(ctx, 235, 100, "#0099ff", THRESHOLD);
})

function hexToRGB(hex) {
  var long = parseInt(hex.replace(/^#/, ""), 16);
  return [(long >>> 16) & 0xff, (long >>> 8) & 0xff, long & 0xff];
}

function fillColor(ctx, x, y, color, threshold = 0) {
  const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
  const newDataBuffer = imageData.data.slice(0);
  const oldRGBA = getRGBAFromCoord(x, y);
  const newRGB = hexToRGB(color);

  function getCoordinateStartIndex(x, y) {
    return (x << 2) + (y * imageData.width << 2);
  }

  function getRGBAFromIndex(startIndex) {
    return newDataBuffer.slice(startIndex, startIndex + 4);
  }

  function getRGBAFromCoord(x, y) {
    const startIndex = getCoordinateStartIndex(x, y);
    return getRGBAFromIndex(startIndex);
  }

  function updateColorAtIndex(startIndex) {
    newDataBuffer.set(newRGB, startIndex);
  }

  function colorsWithinThreshold([r1, g1, b1, a1], [r2, g2, b2, a2]) {
    const r = r1 - r2,
      g = g1 - g2,
      b = b1 - b2,
      a = a1 - a2;
    return r * r + g * g + b * b + a * a <= threshold * threshold << 2;
  }

  if (
    oldRGBA[0] === newRGB[0] &&
    oldRGBA[1] === newRGB[1] &&
    oldRGBA[2] === newRGB[2] &&
    oldRGBA[3] === newRGB[3]
  ) {
    return;
  }

  const fillQueue = [
    [x, y]
  ];

  while (fillQueue.length != 0) {
    const [curX, curY] = fillQueue.pop();
    const curPixelStartIndex = getCoordinateStartIndex(curX, curY);
    updateColorAtIndex(curPixelStartIndex);

    const nextCoords = [
      [curX - 1, curY],
      [curX + 1, curY],
      [curX, curY - 1],
      [curX, curY + 1],
    ];
    for (const [nextX, nextY] of nextCoords) {
      if (nextX < 0 || nextX >= imageData.width || nextY < 0 || nextY >= imageData.height) continue;

      const nextColor = getRGBAFromCoord(nextX, nextY);
      if (colorsWithinThreshold(nextColor, oldRGBA)) {
        fillQueue.push([nextX, nextY]);
      }
    }
  }

  const newImageData = new ImageData(newDataBuffer, imageData.width, imageData.height);
  ctx.putImageData(newImageData, 0, 0);
}
<canvas width="300" height="150"></canvas>
<img width="600" height="300" hidden src="">

Note: this gets considerably slower as the canvas grows in size. So if you experience performance issues, either shrink the size of your canvas and resize the image once it's a PNG, or try implementing Flood fill in WebAssembly.

However, if you need it for this picture only, then since the only white in the image is contained within the eyes, you can greatly simplify the fillColor() function to just look for and update any white pixel:

function fillColor(ctx, color) {
    const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
    const newRGB = hexToRGB(color);

    function getRGBAFromIndex(startIndex) {
        return imageData.data.slice(startIndex, startIndex + 4);
    }

    // copy the buffer of pixel data
    const newDataBuffer = imageData.data.slice(0);

    for (let i = 0; i < newDataBuffer.length; i += 4) {
        const [r, g, b, a] = getRGBAFromIndex(i);
        // check if pixel is white
        if (r === 255 && g === 255 && b === 255 && a === 255) {
            // update pixel to new color into the copy
            newDataBuffer.set(newRGB, i);
        }
    }

    // paint the new image data
    const newImageData = new ImageData(newDataBuffer, imageData.width, imageData.height);
    ctx.putImageData(newImageData, 0, 0);
}
like image 157
Dennis Kats Avatar answered Jan 28 '26 21:01

Dennis Kats



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!