Can someone explain why the result of the code below would be "class B::1" ?
Why does the virtual method of derived class uses the default parameter of a base class and not his own? For me this is pretty strange. Thanks in advance!
Code:
#include <iostream>
using namespace std;
class A
{
public:
virtual void func(int a = 1)
{
cout << "class A::" << a;
}
};
class B : public A
{
public:
virtual void func(int a = 2)
{
cout << "class B::" << a;
}
};
int main()
{
A * a = new B;
a->func();
return 0;
}
Because default arguments are resolved according to the static type of this
(ie, the type of the variable itself, like A&
in A& a;
).
Modifying your example slightly:
#include <iostream>
class A
{
public:
virtual void func(int a = 1)
{
std::cout << "class A::" << a << "\n";
}
};
class B : public A
{
public:
virtual void func(int a = 2)
{
std::cout << "class B::" << a << "\n";
}
};
void func(A& a) { a.func(); }
int main()
{
B b;
func(b);
b.func();
return 0;
}
We observe the following output:
class B::1
class B::2
In action at ideone.
It is not recommended that a virtual function change the default value for this reason. Unfortunately I don't know any compiler that warns on this construct.
The technical explication is that there are two ways of dealing with default argument:
void A::func() { func(1); }
a.func()
=> a.func(/*magic*/1)
If it were the former (and assuming that the A::func
was declared virtual
as well), then it would work like you expect. However the latter form was elected, either because issues with virtual
were not foreseen at the time or because they were deemed inconsequential in face of the benefits (if any...).
Because default value is substituted during compilation and is taken from declaration, while real function to be called (A::func or B::func) is determined at runtime.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With