I have a kind of general R question here:
Usually with digicams we tend to click a lot of immages which may be repetitive and can waste online space while sharing on Picassa or is an overhead when trying to delete some unwanted images.
Is it possible to cluster photos using R? I mean there are some clustering abilities in Matlab for image processing, but is this kind of functionality available or are there any suggestions to do this so in R?
Please provide some ideas if any on this topic.
If you look at CRAN, there are various (I count about 10) packages to read image data. And of course, there are various packages to do clustering. In theory, you could just plug the raw image data into the clustering algorithms, but in practice that wouldn't work very well. In terms of speed, it would be very slow, and in terms of accuracy, it would probably be pretty bad too. Modern techniques to cluster image data rely on specialized features extracted from images and operate on that. The best features are application dependent, but some of the best known are SIFT, SURF, and HOG. Older techniques relied on histograms of colors of the image as features, and that is quite doable with the aforementioned R packages, but it is not very accurate - it can hardly distinguish between a picture of the sea and a picture of a blue room.
So what to do? It depends on your ultimate objective, really. One way could be using one of various open source feature extractors out there, save the data to text or other R-readable formats, and then do the data processing in R as usual.
A nice open source C library to extract features that has a cli interface is vlfeat. If you use this, I recommend using dense SIFT extraction on the three color channels. Then represent each image by the concatenated SIFT vectors and apply your favorite clustering technique (that can handle vectors with dimensionalities in the thousands). That would hardly give you state of the art performance, but it's a start.
This page has various reference implementations of feature extractors, but binary only.
Beware: in my experience, R doesn't scale too well with large, high dimensional datasets (with sizes in the GB range). I love R to death, but use C++ for this stuff.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With