Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Closest integer to floating-point value in C++03

For some integer type, how can I find the value that is closest to some value of a floating-point type even when the floating point value is far outside the representable range of the integer.

Or more precisely:

Let F be a floating-point type (probably float, double, or long double). Let I be an integer type.

Assume that both F and I have valid specializations of std::numeric_limits<>.

Given a representable value of F, and using only C++03, how can I find the closest representable value of I?

I am after in a pure, efficient, and thread-safe solution, and one that assumes nothing about the platform except what is guaranteed by C++03.

If such an solution does not exist, is it possible to find one using the new features of C99/C++11?

Using lround() of C99 seems to be problematic due to the non-trivial way in which domain errors are reported. Can these domain errors be caught in a portable and thread-safe way?

Note: I am aware that Boost probably offers a solution via its boost::numerics::converter<> template, but due to its high complexity and verbosity, and I have not been able to extract the essentials from it, and therefore I have not been able to check whether their solution makes assumptions beyond C++03.

The following naive approach fails due to the fact that the result of I(f) is undefined by C++03 when the integral part of f is not a representable value of I.

template<class I, class F> I closest_int(F f)
{
  return I(f);
}

Consider then the following approach:

template<class I, class F> I closest_int(F f)
{
  if (f < std::numeric_limits<I>::min()) return std::numeric_limits<I>::min();
  if (std::numeric_limits<I>::max() < f) return std::numeric_limits<I>::max();
  return I(f);
}

This also fails because the integral parts of F(std::numeric_limits<I>::min()) and F(std::numeric_limits<I>::max()) may still not be representable in I.

Finally consider this third approach which also fails:

template<class I, class F> I closest_int(F f)
{
  if (f <= std::numeric_limits<I>::min()) return std::numeric_limits<I>::min();
  if (std::numeric_limits<I>::max() <= f) return std::numeric_limits<I>::max();
  return I(f);
}

This time I(f) will always have a well-defined result, however, since F(std::numeric_limits<I>::max()) may be much smaller than std::numeric_limits<I>::max(), it is possible that we will return std::numeric_limits<I>::max() for a floating-point value that is multiple integer values below std::numeric_limits<I>::max().

Note that all the trouble arises because it is undefined whether the conversion F(i) rounds up, or down to the closest representable floating-point value.

Here is the relevant section from C++03 (4.9 Floating-integral conversions):

An rvalue of an integer type or of an enumeration type can be converted to an rvalue of a floating point type. The result is exact if possible. Otherwise, it is an implementation-defined choice of either the next lower or higher representable value.

like image 594
Kristian Spangsege Avatar asked Sep 26 '12 20:09

Kristian Spangsege


1 Answers

I have a practical solution for radix-2 (binary) floating-point types and integer types up to and longer than 64-bit. See below. The comments should be clear. Output follows.

// file: f2i.cpp
//
// compiled with MinGW x86 (gcc version 4.6.2) as:
//   g++ -Wall -O2 -std=c++03 f2i.cpp -o f2i.exe
#include <iostream>
#include <iomanip>
#include <limits>

using namespace std;

template<class I, class F> I truncAndCap(F f)
{
/*
  This function converts (by truncating the
  fractional part) the floating-point value f (of type F)
  into an integer value (of type I), avoiding undefined
  behavior by returning std::numeric_limits<I>::min() and
  std::numeric_limits<I>::max() when f is too small or
  too big to be converted to type I directly.

  2 problems:
  - F may fail to convert to I,
    which is undefined behavior and we want to avoid that.
  - I may not convert exactly into F
    - Direct I & F comparison fails because of I to F promotion,
      which can be inexact.

  This solution is for the most practical case when I and F
  are radix-2 (binary) integer and floating-point types.
*/
  int Idigits = numeric_limits<I>::digits;
  int Isigned = numeric_limits<I>::is_signed;

/*
  Calculate cutOffMax = 2 ^ std::numeric_limits<I>::digits
  (where ^ denotes exponentiation) as a value of type F.

  We assume that F is a radix-2 (binary) floating-point type AND
  it has a big enough exponent part to hold the value of
  std::numeric_limits<I>::digits.

  FLT_MAX_10_EXP/DBL_MAX_10_EXP/LDBL_MAX_10_EXP >= 37
  (guaranteed per C++ standard from 2003/C standard from 1999)
  corresponds to log2(1e37) ~= 122, so the type I can contain
  up to 122 bits. In practice, integers longer than 64 bits
  are extremely rare (if existent at all), especially on old systems
  of the 2003 C++ standard's time.
*/
  const F cutOffMax = F(I(1) << Idigits / 2) * F(I(1) << (Idigits / 2 + Idigits % 2));

  if (f >= cutOffMax)
    return numeric_limits<I>::max();

/*
  Calculate cutOffMin = - 2 ^ std::numeric_limits<I>::digits
  (where ^ denotes exponentiation) as a value of type F for
  signed I's OR cutOffMin = 0 for unsigned I's in a similar fashion.
*/
  const F cutOffMin = Isigned ? -F(I(1) << Idigits / 2) * F(I(1) << (Idigits / 2 + Idigits % 2)) : 0;

  if (f <= cutOffMin)
    return numeric_limits<I>::min();

/*
  Mathematically, we may still have a little problem (2 cases):
    cutOffMin < f < std::numeric_limits<I>::min()
    srd::numeric_limits<I>::max() < f < cutOffMax

  These cases are only possible when f isn't a whole number, when
  it's either std::numeric_limits<I>::min() - value in the range (0,1)
  or std::numeric_limits<I>::max() + value in the range (0,1).

  We can ignore this altogether because converting f to type I is
  guaranteed to truncate the fractional part off, and therefore
  I(f) will always be in the range
  [std::numeric_limits<I>::min(), std::numeric_limits<I>::max()].
*/

  return I(f);
}

template<class I, class F> void test(const char* msg, F f)
{
  I i = truncAndCap<I,F>(f);
  cout <<
    msg <<
    setiosflags(ios_base::showpos) <<
    setw(14) << setprecision(12) <<
    f << " -> " <<
    i <<
    resetiosflags(ios_base::showpos) <<
    endl;
}

#define TEST(I,F,VAL) \
  test<I,F>(#F " -> " #I ": ", VAL);

int main()
{
  TEST(short, float,     -1.75f);
  TEST(short, float,     -1.25f);
  TEST(short, float,     +0.00f);
  TEST(short, float,     +1.25f);
  TEST(short, float,     +1.75f);

  TEST(short, float, -32769.00f);
  TEST(short, float, -32768.50f);
  TEST(short, float, -32768.00f);
  TEST(short, float, -32767.75f);
  TEST(short, float, -32767.25f);
  TEST(short, float, -32767.00f);
  TEST(short, float, -32766.00f);
  TEST(short, float, +32766.00f);
  TEST(short, float, +32767.00f);
  TEST(short, float, +32767.25f);
  TEST(short, float, +32767.75f);
  TEST(short, float, +32768.00f);
  TEST(short, float, +32768.50f);
  TEST(short, float, +32769.00f);

  TEST(int, float, -2147483904.00f);
  TEST(int, float, -2147483648.00f);
  TEST(int, float, -16777218.00f);
  TEST(int, float, -16777216.00f);
  TEST(int, float, -16777215.00f);
  TEST(int, float, +16777215.00f);
  TEST(int, float, +16777216.00f);
  TEST(int, float, +16777218.00f);
  TEST(int, float, +2147483648.00f);
  TEST(int, float, +2147483904.00f);

  TEST(int, double, -2147483649.00);
  TEST(int, double, -2147483648.00);
  TEST(int, double, -2147483647.75);
  TEST(int, double, -2147483647.25);
  TEST(int, double, -2147483647.00);
  TEST(int, double, +2147483647.00);
  TEST(int, double, +2147483647.25);
  TEST(int, double, +2147483647.75);
  TEST(int, double, +2147483648.00);
  TEST(int, double, +2147483649.00);

  TEST(unsigned, double,          -1.00);
  TEST(unsigned, double,          +1.00);
  TEST(unsigned, double, +4294967295.00);
  TEST(unsigned, double, +4294967295.25);
  TEST(unsigned, double, +4294967295.75);
  TEST(unsigned, double, +4294967296.00);
  TEST(unsigned, double, +4294967297.00);

  return 0;
}

Output (ideone prints the same as my PC):

float -> short:          -1.75 -> -1
float -> short:          -1.25 -> -1
float -> short:             +0 -> +0
float -> short:          +1.25 -> +1
float -> short:          +1.75 -> +1
float -> short:         -32769 -> -32768
float -> short:       -32768.5 -> -32768
float -> short:         -32768 -> -32768
float -> short:      -32767.75 -> -32767
float -> short:      -32767.25 -> -32767
float -> short:         -32767 -> -32767
float -> short:         -32766 -> -32766
float -> short:         +32766 -> +32766
float -> short:         +32767 -> +32767
float -> short:      +32767.25 -> +32767
float -> short:      +32767.75 -> +32767
float -> short:         +32768 -> +32767
float -> short:       +32768.5 -> +32767
float -> short:         +32769 -> +32767
float -> int:    -2147483904 -> -2147483648
float -> int:    -2147483648 -> -2147483648
float -> int:      -16777218 -> -16777218
float -> int:      -16777216 -> -16777216
float -> int:      -16777215 -> -16777215
float -> int:      +16777215 -> +16777215
float -> int:      +16777216 -> +16777216
float -> int:      +16777218 -> +16777218
float -> int:    +2147483648 -> +2147483647
float -> int:    +2147483904 -> +2147483647
double -> int:    -2147483649 -> -2147483648
double -> int:    -2147483648 -> -2147483648
double -> int: -2147483647.75 -> -2147483647
double -> int: -2147483647.25 -> -2147483647
double -> int:    -2147483647 -> -2147483647
double -> int:    +2147483647 -> +2147483647
double -> int: +2147483647.25 -> +2147483647
double -> int: +2147483647.75 -> +2147483647
double -> int:    +2147483648 -> +2147483647
double -> int:    +2147483649 -> +2147483647
double -> unsigned:             -1 -> 0
double -> unsigned:             +1 -> 1
double -> unsigned:    +4294967295 -> 4294967295
double -> unsigned: +4294967295.25 -> 4294967295
double -> unsigned: +4294967295.75 -> 4294967295
double -> unsigned:    +4294967296 -> 4294967295
double -> unsigned:    +4294967297 -> 4294967295
like image 67
Alexey Frunze Avatar answered Oct 27 '22 16:10

Alexey Frunze