I know this is a recurring question (here, here, and more), and I know that the problem is related to creating lazy sequencies, but I can't see why it fails.
The problem: I had written a (not very nice) quicksort algorithm to sort strings that uses loop/recur. But applied to 10000 elements, I get a StackOverflowError:
(defn qsort [list]
(loop [[current & todo :as all] [list] sorted []]
(cond
(nil? current) sorted
(or (nil? (seq current)) (= (count current) 1)) (recur todo (concat sorted current))
:else (let [[pivot & rest] current
pred #(> (compare pivot %) 0)
lt (filter pred rest)
gte (remove pred rest)
work (list* lt [pivot] gte todo)]
(recur work sorted)))))
I used in this way:
(defn tlfnum [] (str/join (repeatedly 10 #(rand-int 10))))
(defn tlfbook [n] (repeatedly n #(tlfnum)))
(time (count (qsort (tlfbook 10000))))
And this is part of the stack trace:
[clojure.lang.LazySeq seq "LazySeq.java" 49]
[clojure.lang.RT seq "RT.java" 521]
[clojure.core$seq__4357 invokeStatic "core.clj" 137]
[clojure.core$concat$fn__4446 invoke "core.clj" 706]
[clojure.lang.LazySeq sval "LazySeq.java" 40]
[clojure.lang.LazySeq seq "LazySeq.java" 49]
[clojure.lang.RT seq "RT.java" 521]
[clojure.core$seq__4357 invokeStatic "core.clj" 137]]}
As far as I know, loop/recur performs tail call optimization, so no stack is used (is, in fact, an iterative process written using recursive syntax).
Reading other answers, and because of the stack trace, I see there's a problem with concat
and adding a doall
before concat
solves the stack overflow problem. But... why?
Here's part of the code for the two-arity version of concat.
(defn concat [x y]
(lazy-seq
(let [s (seq x)]
,,,))
)
Notice that it uses two other functions, lazy-seq
, and seq
. lazy-seq
is a bit like a lambda, it wraps some code without executing it yet. The code inside the lazy-seq
block has to result in some kind of sequence value. When you call any sequence operation on the lazy-seq
, then it will first evaluate the code ("realize" the lazy seq), and then perform the operation on the result.
(def lz (lazy-seq
(println "Realizing!")
'(1 2 3)))
(first lz)
;; prints "realizing"
;; => 1
Now try this:
(defn lazy-conj [xs x]
(lazy-seq
(println "Realizing" x)
(conj (seq xs) x)))
Notice that it's similar to concat
, it calls seq
on its first argument, and returns a lazy-seq
(def up-to-hundred
(reduce lazy-conj () (range 100)))
(first up-to-hundred)
;; prints "Realizing 99"
;; prints "Realizing 98"
;; prints "Realizing 97"
;; ...
;; => 99
Even though you asked for only the first element, it still ended up realizing the whole sequence. That's because realizing the outer "layer" results in calling seq
on the next "layer", which realizes another lazy-seq, which again calls seq, etc. So it's a chain reaction that realizes everything, and each step consumes a stack frame.
(def up-to-ten-thousand
(reduce lazy-conj () (range 10000)))
(first up-to-ten-thousand)
;;=> java.lang.StackOverflowError
You get the same problem when stacking concat
calls. That's why for instance (reduce concat ,,,)
is always a smell, instead you can use (apply concat ,,,)
or (into () cat ,,,)
.
Other lazy operators like filter
and map
can exhibit the exact same problem. If you really have a lot of transformation steps over a sequence consider using transducers instead.
;; without transducers: many intermediate lazy seqs and deep call stacks
(->> my-seq
(map foo)
(filter bar)
(map baz)
,,,)
;; with transducers: seq processed in a single pass
(sequence (comp
(map foo)
(filter bar)
(map baz))
my-seq)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With