I want to be able to take my current set of data, which is filled with ints, and classify them according to certain criteria. The table looks something like this:
[in]> df = pd.DataFrame({'A':[0,2,3,2,0,0],'B': [1,0,2,0,0,0],'C': [0,0,1,0,1,0]})
[out]>
A B C
0 0 1 0
1 2 0 0
2 3 2 1
3 2 0 0
4 0 0 1
5 0 0 0
I'd like to classify these in a separate column by string. Being more familiar with R, I tried to create a new column with the rules in that column's definition. Following that I attempted with .ix and lambdas which both resulted in a type errors (between ints & series ). I'm under the impression that this is a fairly simple question. Although the following is completely wrong, here is the logic from attempt 1:
df['D']=(
if ((df['A'] > 0) & (df['B'] == 0) & df['C']==0):
return "c1";
elif ((df['A'] == 0) & ((df['B'] > 0) | df['C'] >0)):
return "c2";
else:
return "c3";)
for a final result of:
A B C D
0 0 1 0 "c2"
1 2 0 0 "c1"
2 3 2 1 "c3"
3 2 0 0 "c1"
4 0 0 1 "c2"
5 0 0 0 "c3"
If someone could help me figure this out it would be much appreciated.
By using pandas. concat() you can combine pandas objects for example multiple series along a particular axis (column-wise or row-wise) to create a DataFrame. concat() method takes several params, for our scenario we use list that takes series to combine and axis=1 to specify merge series as columns instead of rows.
Series is a one-dimensional labeled array capable of holding data of any type (integer, string, float, python objects, etc.).
I can think of two ways. The first is to write a classifier function and then .apply
it row-wise:
>>> import pandas as pd
>>> df = pd.DataFrame({'A':[0,2,3,2,0,0],'B': [1,0,2,0,0,0],'C': [0,0,1,0,1,0]})
>>>
>>> def classifier(row):
... if row["A"] > 0 and row["B"] == 0 and row["C"] == 0:
... return "c1"
... elif row["A"] == 0 and (row["B"] > 0 or row["C"] > 0):
... return "c2"
... else:
... return "c3"
...
>>> df["D"] = df.apply(classifier, axis=1)
>>> df
A B C D
0 0 1 0 c2
1 2 0 0 c1
2 3 2 1 c3
3 2 0 0 c1
4 0 0 1 c2
5 0 0 0 c3
and the second is to use advanced indexing:
>>> df = pd.DataFrame({'A':[0,2,3,2,0,0],'B': [1,0,2,0,0,0],'C': [0,0,1,0,1,0]})
>>> df["D"] = "c3"
>>> df["D"][(df["A"] > 0) & (df["B"] == 0) & (df["C"] == 0)] = "c1"
>>> df["D"][(df["A"] == 0) & ((df["B"] > 0) | (df["C"] > 0))] = "c2"
>>> df
A B C D
0 0 1 0 c2
1 2 0 0 c1
2 3 2 1 c3
3 2 0 0 c1
4 0 0 1 c2
5 0 0 0 c3
Which one is clearer depends upon the situation. Usually the more complex the logic the more likely I am to wrap it up in a function I can then document and test.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With