I use naiveBayes (e1071 http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Classification/Na%C3%AFve_Bayes) for classifying my data set (Classification class: "class" 0/1). Here is what I do:
library(e1071)
arrhythmia <- read.csv(file="/home/.../arrhythmia.csv", head=TRUE, sep=",")
#devide into training and test data 70:30
trainingIndex <- createDataPartition(arrhythmia$class, p=.7, list=F)
arrhythmia.training <- arrhythmia[trainingIndex,]
arrhythmia.testing <- arrhythmia[-trainingIndex,]
nb.classifier <- naiveBayes(class ~ ., data = arrhythmia.training)
predict(nb.classifier,arrhythmia.testing[,-260])
The classifier does not work, here is what I get:
> predict(nb.classifier,arrhythmia.testing[,-260])
factor(0)
Levels:
> str(arrhythmia.training)
'data.frame': 293 obs. of 260 variables:
$ age : int 75 55 13 40 44 50 62 54 30 46 ...
$ sex : int 0 0 0 1 0 1 0 1 0 1 ...
$ height : int 190 175 169 160 168 167 170 172 170 158 ...
$ weight : int 80 94 51 52 56 67 72 58 73 58 ...
$ QRSduration : int 91 100 100 77 84 89 102 78 91 70 ...
$ PRinterval : int 193 202 167 129 118 130 135 155 180 120 ...
# and so on (260 attributes)
> str(arrhythmia.training[260])
'data.frame': 293 obs. of 1 variable:
$ class: int 1 0 1 0 0 1 1 1 1 0 ...
> nb.classifier$levels
NULL
I tried to use the included the data set (iris) and everything works fine. What's wrong with my approach?
Make sure that you treat class variable as factor; i.e.
nb.classifier <- naiveBayes(as.factor(class) ~ ., data = arrhythmia.training)
By the way, you don't need to exclude class variable from predict call.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With