Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Church numeral for addition

I am stuck up at the following step. It will be great if someone can help me out:

2 = λfx.f(f x)
3 = λfx.f(f(f x))
ADD = λm n f x. m f (n f x)

My steps are:

   (λm n f x. m f (n f x)) (λf x.f(f(f x))) (λf x.f(f x))
-> ((λn f x. (λf x.f(f(f x))) f (n f x))) (λf x.f(f x))
-> ((λf x. (λf' x'.f'(f'(f' x'))) f ((λf" x".f"(f" x")) f x)

Is the parenthesis fine? I really confuse myself on the substitutions and parenthesis. Is there a formal, easier technique to address such problems?

like image 268
name_masked Avatar asked Jun 20 '10 01:06

name_masked


People also ask

How do you reduce beta?

x'x'] - Notation for a beta reduction, we remove the first parameter, and replace it's occurrences in the output with what is being applied [a := b] denotes that a is to be replaced with b. = (λyz. (λx'. x'x')yz) - The actual reduction, we replace the occurrence of x with the provided lambda expression.


2 Answers

Try Alligator Eggs!

Here are my steps, which I derived with the help of Alligator Eggs:

ADD 2 3
-> (λm n f x. m f (n f x)) (λf x.f(f(f x))) (λf x.f(f x))
->   (λn f x. (λf x.f(f(f x))) f (n f x))   (λf x.f(f x))
->     (λf x. (λf x.f(f(f x))) f ((λf x.f(f x)) f x)) 
->     (λf x.   (λx.f(f(f x)))   ((λf x.f(f x)) f x)) 
->     (λf x.       f(f(f(λf x.f(f x)) f x)))))
->     (λf x.       f(f(f  (λx.f(f x)) x)))))
->     (λf x.       f(f(f     (f(f x))  )))))
like image 96
Artelius Avatar answered Oct 06 '22 10:10

Artelius


My advice, from my own limited but recent experience:

  1. Do one thing at a time: perform an alpha conversion, a beta reduction or an eta conversion. Note in the margin of the page you're working on what step you've taken to reach the next line. If those words aren't familiar to you, what they do will be - just take a look on Wikipedia.

A quick summary of these reduction steps:

Alpha just means change the names of variables in a context consistently:

λfx. f (f x) => λgx. g (g x)

Beta just means apply the lambda to one argument

(λf x. f x) b => λx. b x

Eta is simply 'unwrapping' an unnecessarily wrapped function that doesen't change its meaning.

λx.f x => f

Then

  1. Use lots of alpha conversion to change the names of the variables to make things clearer. All those fs, it's always going to be confusing. You've done something similar with the " on your second row

  2. Pretend you're a computer! Don't leap ahead or skip a step when you're evaluating an expression. Just do the next thing (and only one thing). Only move faster once you're confident moving slowly.

  3. Consider naming some of the expressions and only substituting them for their lambda expressions when you need to evaluate them. I usually note the substitution in the margin of the page as by def as it's not really a reduction step. Something like:

    add two three 
    (λm n f x. m f (n f x)) two three | by def
    

So following the above rules, here's my worked example:

two   = λfx. f (f x)
three = λfx. f (f (f x))
add   = λmnfx. m f (n f x)

0  | add two three 
1  | (λm n f x. m f (n f x)) two three           | by def
2  | (λn f x. two f (n f x)) three               | beta
3  | (λf x. two f (three f x))                   | beta
4  | (λf x. two f ((λfx. f (f (f x))) f x))      | by def
5  | (λf x. two f ((λgy. g (g (g y))) f x))      | alpha
6  | (λf x. two f ((λy. f (f (f y))) x))         | beta
7  | (λf x. two f (f (f (f x))))                 | beta
8  | (λf x. (λfx. f (f x)) f (f (f (f x))))      | by def
9  | (λf x. (λgy. g (g y)) f (f (f (f x))))      | alpha
10 | (λf x. (λy. f (f y)) (f (f (f x))))         | beta
11 | (λf x. (λy. f (f (f (f (f x))))))           | beta
like image 7
gypsydave5 Avatar answered Oct 06 '22 10:10

gypsydave5